首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forced nonlinear vibrations of cylindrical shells partially filled with a liquid are studied. The wave motions of the free liquid surface are taken into account. Regular periodic deformation modes of the shell are studied, and frequency ranges where these modes do not occur are determined  相似文献   

2.
The results from studies into the vibrations and dynamic stability of thin elastic shells with initial geometric imperfections are analyzed. The corresponding dynamic problems are solved in both linear and nonlinear formulations. The influence of initial axisymmetric and nonaxisymmetric deflections on natural, forced, parametrically excited, and self-excited vibrations (flutter) is studied. The dynamic buckling of imperfect shells under short-term impulsive loading is examined. Some aspects of experimental investigation into the vibrations of shells with small geometric imperfections (deviations from the design shape) are considered  相似文献   

3.
The free vibrations of flexible shallow shells with complex planform are studied. To analyze the natural frequencies and modes of linear vibrations, the R-function and Rayleigh–Ritz methods are used. A discrete model is obtained using the Bubnov–Galerkin method. The nonlinear vibrations are studied by combining the nonlinear normal mode method and the multiple-scales method. Skeleton curves of natural vibrations are drawn  相似文献   

4.
The paper reports on experimental results for a dynamic system of two identical shells filled with a liquid and placed on a common elastic foundation. It is established that vibrations excited in one of the shells synchronize the vibrations of the whole system  相似文献   

5.
The nonlinear resonance vibrations and stability of nonlinear orthotropic shells partially filled with a liquid and subjected to longitudinal and transverse periodic loading are studied. The equations of motion are derived with regard for the existence and nonlinear interaction of conjugate flexural modes of the shell. Stationary regimes for forced and parametric vibrations are found and analyzed for stability under the conditions of fundamental and subharmonic resonances. The amplitude–frequency characteristics of these regimes are constructed for various parameters of the system  相似文献   

6.
An experimental study is made of specific features of the motion of the free surface of liquid in different conical shells, the formation, motion, and local accumulation of gas bubbles in the shells, and the character of random motion of the gas-liquid medium in a vibrational force field. It is established that the liquid moves along the horizontal as well as the vertical axes under certain conditions when axisymmetric modes of vibration of the free surface are excited. The main characteristics of the dynamic behavior of a gas-liquid medium in a compound conical shell having the form of a de Laval nozzle are examined for the case when the medium forms a nonlinear oscillatory “liquid-gas” system that is dynamically stable. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev, Ukraine. Translated from Prikladnaya Mekhanika, Vol. 35, No. 2, pp. 23–29, February, 1999.  相似文献   

7.
In this paper, the large-amplitude (geometrically nonlinear) vibrations of rotating, laminated composite circular cylindrical shells subjected to radial harmonic excitation in the neighborhood of the lowest resonances are investigated. Nonlinearities due to large-amplitude shell motion are considered using the Donnell’s nonlinear shallow-shell theory, with account taken of the effect of viscous structure damping. The dynamic Young’s modulus which varies with vibrational frequency of the laminated composite shell is considered. An improved nonlinear model, which needs not to introduce the Airy stress function, is employed to study the nonlinear forced vibrations of the present shells. The system is discretized by Galerkin’s method while a model involving two degrees of freedom, allowing for the traveling wave response of the shell, is adopted. The method of harmonic balance is applied to study the forced vibration responses of the two-degrees-of-freedom system. The stability of analytical steady-state solutions is analyzed. Results obtained with analytical method are compared with numerical simulation. The agreement between them bespeaks the validity of the method developed in this paper. The effects of rotating speed and some other parameters on the nonlinear dynamic response of the system are also investigated.  相似文献   

8.
In the framework of the nonlinear theory of flexible shallow shells, we study free bending vibrations of a thin-walled circular cylindrical shell hinged at the end faces. The finite-dimensional shell model assumes that the excitation of large-amplitude bending vibrations inevitably results in the appearance of radial vibrations of the shell. The modal equations are obtained by the Bubnov-Galerkin method. The periodic solutions are found by the Krylov-Bogolyubov method. We show that if the tangential boundary conditions are satisfied “in the mean,” then, for a shell of finite length, significant errors arise in determining its nonlinear dynamic characteristics. We prove that small initial irregularities split the bending frequency spectrum, the basic frequency being smaller than in the case of an ideal shell.  相似文献   

9.
The features of the dynamic behavior of the free liquid surface in a rigid cylindrical body that executes translational quasistationary vibrations are studied. The frequency of these vibrations is a slowly varying function of time. The liquid motion is studied in the resonant zones corresponding to two cases of body excitation — longitudinal and transverse  相似文献   

10.
A technique is proposed to study the multimode nonlinear vibrations of circular shells fully filled with a perfect incompressible liquid. This technique is used to study the basic laws of modal interaction at nonlinear, including sub-harmonic resonances  相似文献   

11.
本文分析了各向同性封闭圆柱壳的非线性自由振动。文中采用经典的非线性弹性力学方法推导了圆柱壳的大振幅运动方程,这些方程的静态形式与冯·卡门的板理论方程具有同样的精度。文中讨论了四种基本振动模态,并且还以数学公式的形式给出了一般的最终结果,一些例子以曲线给出结果,并进行了比较。结果还表明线性振动可以作为非线性振动的一种特例。  相似文献   

12.
In present work, an effective method to research geometrically nonlinear free vibrations of elements of thin-walled constructions that can be modeled as laminated shallow shells with complex planform is applied. The proposed method is numerical–analytical. It is based on joint use of the R-functions theory, variational methods, Bubnov–Galerkin procedure and Runge–Kutta method. The mathematical formulation of the problem is performed in a framework of the refined first-order shallow shells theory. To implement the developed method, appropriate software was developed. New problems of linear and nonlinear vibrations of laminated shallow shells with clamped cutouts are solved. To confirm reliability of the obtained results, their comparison with the ones known in the literature is provided. Effect of boundary conditions is studied.  相似文献   

13.
The paper proposes an approach to studying the nonlinear vibrations of thin cylindrical shells filled with a fluid and subjected to a combined transverse–longitudinal load. Methods of nonlinear mechanics are used to find and analyze periodic solutions of the system of equations that describes the dynamic behavior of the shell when the natural frequencies of the shell and the frequencies of both periodic forces are in resonance relations.  相似文献   

14.
The purpose of this work is to investigate the dynamic behaviour of an electrically-actuated microbeam. The electromechanical model is based on the strain-gradient elasticity theory and it gives proper account of the nonlinear geometric term due to the mid-plane stretching and of an applied axial load. The free nonlinear vibrations are studied with the energy balance method and the homotopy analysis method Liao (Commun Nonlinear Sci Numer Simul 14(4):983, 2009), thus carrying out a thorough analysis with regard to the nonlinear terms. The analysis is based on a single-degree-of-freedom model, where the nonlinear electric force acting on the beam is approximated by the Chebyshev method and a fringing field correction term is considered as well. A numerical solution, obtained by a 4th order Runge Kutta algorithm, is also proposed as a benchmark for all the semi-analytical results. Major attention is paid to verify the agreement between the different methods and the their accuracy in the pull-in regime.  相似文献   

15.
Nonlinear vibrations of orthotropic shallow shells of revolution   总被引:1,自引:1,他引:0  
A set of nonlinearly coupled algebraic and differential eigenvalue equations of nonlinear axisymmetric free vibration of orthotropic shallow thin spherical and conical shells are formulated.following an assumed time-mode approach suggested in this paper. Analytic solutions are presented and an asymptotic relation for the amplitude-frequency response of the shells is derived. The effects of geometrical and material parameters on vibrations of the shells are investigated.  相似文献   

16.
Natural vibrations localized at the free edge of a semiinfinite, elastic, orthotropic, circular cylindrical shell of open profile are studied. The cylinder is hinged along the bounding generatrices. Dispersion equations are derived from the classical equations describing the dynamic equilibrium for orthotropic cylindrical shells. It is established that these dispersion equations and the dispersion equations for a semiinfinite orthotropic plate strip are in an asymptotic relationship. A procedure for analysis of the possible types of vibrations at the free edge of the cylinder is described. Approximate values of the dimensionless natural frequency and damping factor are determined for shells of different radii  相似文献   

17.
考虑碳纳米管复合材料作为功能梯度材料的不均匀性,基于连续介质理论以及哈密尔顿变分原理,建立了功能梯度碳纳米管增强复合材料开口圆锥薄壳结构的非线性运动偏微分控制方程,然后利用Galerkin法,将非线性偏微分控制方程转化为常微分控制方程,进而采用谐波平衡法求解了开口圆锥壳的非线性自由振动问题,并探讨了圆锥薄壳几何参数、碳纳米管参数对结构非线性自由振动的影响.数值研究表明结构的无量纲非线性自由振动频率与线性自由振动频率的比值随圆锥薄壳长厚比的增大而变小、并随圆锥角的增大而变大.  相似文献   

18.
This paper discusses the derivation of discrete low-dimensional models for the non-linear vibration analysis of thin shells. In order to understand the peculiarities inherent to this class of structural problems, the non-linear vibrations and dynamic stability of a circular cylindrical shell subjected to dynamic axial loads are analyzed. This choice is based on the fact that cylindrical shells exhibit a highly non-linear behavior under both static and dynamic axial loads. Geometric non-linearities due to finite-amplitude shell motions are considered by using Donnell’s nonlinear shallow shell theory. A perturbation procedure, validated in previous studies, is used to derive a general expression for the non-linear vibration modes and the discretized equations of motion are obtained by the Galerkin method. The responses of several low-dimensional models are compared. These are used to study the influence of the modelling on the convergence of critical loads, bifurcation diagrams, attractors and large amplitude responses of the shell. It is shown that rather low-dimensional and properly selected models can describe with good accuracy the response of the shell up to very large vibration amplitudes.  相似文献   

19.
The natural vibrations of a cantilever thin elastic orthotropic circular cylindrical shell are studied. Dispersion equations for the determination of possible natural frequencies of cantilever closed shells and open shells with Navier hinged boundary conditions at the longitudinal edges are derived from the classical dynamic theory of orthotropic cylindrical shells. It is proved that there are asymptotic relationships between these problems and the problems for a cantilever orthotropic strip plate and for a cantilever rectangular plate and the eigenvalue problem for a semi-infinite closed orthotropic cylindrical shell with free end and for the same but open shell with Navier hinged boundary conditions at the longitudinal edges. A procedure to identify types of vibrations is presented. Orthotropic cylindrical shells with different radii and lengths are used as an example to find approximate values of the dimensionless natural frequency and damping factor for vibration modes __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 5, pp. 68–91, May 2008.  相似文献   

20.
The paper discusses the results of systematic experimental studies of vibrations and dynamic instability of thin shells of revolution made of laminated composite materials (glassfiber-reinforced plastics). The basic patterns in the dynamic deformation of shells during natural, forced, and parametric vibrations are considered. The damping parameters of natural vibrations are analyzed. The wave deformation modes of shells subject to periodic excitation are studied. The effect of long-term vibratory loading (torsion) on the dynamic characteristics of three-layer glassfiber-reinforced plastic shells is examined  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号