首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tandem quadrupole mass spectrometer is used to study the charge transfer reactions NH3+ + NO and NO+ + NH3 over a collision energy range 1.5–13 eV. The vibrational state of the reagent ions is selected by resonance-enhanced multiphoton ionization. For the 0.9 eV exothermic process NH3+ + NO → NH3 + NO+ excitation of the v2 umbrella bending mode (v2 = 0–12) causes no marked change in the charge transfer cross section, while in the reverse process NO+ + NH3 → NO + NH3+ excitation of the NO+ vibration (v = 0–6) strongly enhanced the charge transfer cross section.  相似文献   

2.
Structured time of flight spectra of both Li+ and H+ ions scattered from ground state SF6, have been measured at angles (5.0° vc.m. 16.6°) less than the rainbow angle at Ec.m., = 4.3 eV and 9.7 eV, respectively. The structure can be arttributed to vibrational excitation of the v3 mode by H+ and excitation of the v4 mode by Li+. The relative transition probabilities obey a Poisson distribution and can be explained by a simple forced oscillator model.  相似文献   

3.
A laser pulse-and-probe method has been used to determine the nascent vibrational populations in NO(v=0–4) and O2(v=6–11) formed in the thermal reaction: O(3P) + NO2 → O2(v) + NO(v). A frequency-tripled Nd: YAG laser is used to photolyse NO2, diluted tenfold in Ar, and laser-induced fluorescence spectroscopy in the NO A 2Σ+-X 2Π and O2 B 3Σu -X 3Σg electronic band system is used both to follow the kinetics of individual vibrational states and to determine the nascent vibrational distributions. The majority of the NO product is formed in v = 0 and the average vibrational yield is ≈ 4.6%. The O2 populations fall monotonically from v = 6 to 11 in a distribution close to what is expected on prior grounds. Based on a surprisal analysis, the average vibrational energy yield in O2 is ≈ 26%. The nature of the reaction dynamics is discussed.  相似文献   

4.
FTIR spectra of the four isotopically substituted 1:1 complexes of acetonitrile and boron trifluoride were recorded in Ar, N2 and Xe matrices. In Ar, previously unreported three vibrational modes of the complex were clearly observed. Several significant vibrational bands were also observed in N2 and Xe. The observed frequency shifts on complexation, Δν, were qualitatively in good agreement with the computational results, which were calculated at the B3LYP/6-311++G(d,p) level using the optimized geometry of the C3v eclipsed conformation. The observed magnitudes of Δν for most of the complex bands were larger than the calculated values. The BF3 symmetric deformation mode is an exception. The observed frequency shits for this mode were smaller than the calculated values, especially in N2. This suggests that even an inert matrix can significantly affect the vibrational spectrum of the complex.  相似文献   

5.
Ab initio molecular orbital theory was used to determine the equilibrium structure and vibrational frequencies of Fe2Cl6 and FeAlCl6. The equilibrium structure the Fe2Cl6 dimer has D2h symmetry with a planar arrangement of the four membered {FeClbrFeClbr} ring, similar to the Al2Cl6 dimer. The calculated bond distances and vibrational frequencies are in good agreement with experiment. The potential energy surface for the puckering of the {FeClbrFeClbr} ring is extremely flat. This prevents an unambiguous assignment of either D2h or C2v symmetry to the Fe2Cl6 structure in electron diffraction measurements. The FeAlCl6 molecule is found to have a C2v structure similar to Fe2Cl6 with vibrational frequencies in good agreement with experiment.  相似文献   

6.
The v3 mode of CH3F was excited by irradiation with a TEA CO2 laser pulse, and the time-resolved emission spectra of the v3 overtone and the 3 μ;m region were observed. The results indicate that the population of the v4 level behaves kinetically in the same manner as that of 2v3 or 3v3. This suggests an efficient energy transfer between these levels.  相似文献   

7.
Synchrotron radiation is used to excite selectively the chlorine molecule in a Ne buffer gas. Due to the fast relaxation induced by the buffer gas, in the excitation spectrum of the D′→A′ emission at 258 nm, a new progression is observed. It is attributed to the 3 1Σu+ state which is the result of an avoided crossing between the Rydberg state πg→5pπ and the valence state (1441) (σg→σu). It is characterized by Te=83251 cm−1, ωe=783 cm−1, ωexe=29.6 cm−1 and re=1.844 Å.  相似文献   

8.
Autoionizing Rydberg levels of Li2 molecules in a supersonic molecular beam are populated by stepwise excitation with two tunable pulsed dye lasers. The observed autoionization spectra show severe perturbations. Based on calculations of quantum defects and a perturbation treatment of l-uncoupling a tentative assignment of Rydberg series up to n = 32 is proposed. The convergence limits of these series yield a value of IP = 41475 cm−1 for the adiabatic ionization potential and a vibrational constant ωe = 263 cm−1 for the X2Σ+g ground state of Li+2. The experimental results are compared with ab initio calculations combined with a core polarization potential, which yield the potential curve. the dissociation energy, the quadrupole moment and the vibrational frequency for the X2Σ+g ground state of Li+2, in the excellent agreement with experimental findings.  相似文献   

9.
Four neutral bimetallic clusters X2M2 (X=Si, Ge, M=Al, Ga) are investigated using density functional theory (DFT) and post-HF methods. The calculated results show that each of four X2M2 species has two energetically close stable isomers with rhombic structure (D2h symmetry) and trapezoidal structure (C2v symmetry) respectively. For the Ge2Al2 species the rhombic (D2h) isomer is the ground state, whereas for other three species Ge2Ga2, Si2Al2, and Si2Ga2, the trapezoidal (C2v) isomers are the ground states. The calculated magnetic susceptibility anisotropy (χanis) and nucleus-independent chemical shift (NICS) indicate that a strong diatropic ring current exists in the two heterocyclic planar isomers, suggesting they are highly aromatic. A detailed molecular orbital analysis further reveals that both heterocyclic isomers possess multiple aromaticity derived from one delocalized π MOs and two delocalized σ MOs.  相似文献   

10.
The effect of significant decrease of water absorptivity for the intense picosecond laser radiation at λ=2.79 and 2.94 μm being near the centre of the OH stretching mode absorption band was discovered. In the case of pure water a thermal mechanism dominated: a very fast temperature rise led to weakening of H-bonds and consequently to the absorption band shift towards higher frequencies. As a result a considerable (up to 10 times) decrease in the optical density at the laser frequency was obtained. In the second case of HDO diluted in D2O the temperature effects were eliminated and a pure spectroscopic saturation of the v = 0 to v =1 vibrational transition was displayed. The value of the saturation intensity as high as Is=2.5 × 1011W cm−2 in this case gives the value of energy relaxation time of the OH excited state to be T1=0.6 ps. The width of the homogeneously broadened component of the fundamental OH band in HDO is evaluated to be greater than or equal to 50 cm−1.  相似文献   

11.
Two carbon-rich starburst gold(I) acetylide complexes [TEE][Au(PCy3)]4 (3, [TEE]H4=tetraethynylethene) and [TEB][Au(PCy3)]3 (6, [TEB]H3=1,3,5-triethynylbenzene) were prepared and their UV–vis absorption, emission and excitation spectra have been recorded. In fluid CH2Cl2 solutions, 3 exhibits prompt 1(ππ*) fluorescence with λ0–0 and λmax at 413 and 428 nm, respectively, while 6 displays 3(ππ*) phosphorescence with λ0–0 and λmax at 446 and 479 nm, respectively. The crystal structure of 3·CH2Cl2 has been determined.  相似文献   

12.
The electron scattering pattern of gaseous dicyclopentadienylberyllium, Cp2Be, has been recorded from s = 2.00 to 39.00 Å−1 with a nozzle temperature of about 120°C. Molecular models of D5d symmetry or models containing one π-bonded and one σ-bonded Cp ring are not compatible with the data. The possibility the gaseous Cp2Be consists fo a mixture D5d and π-Cp, σ-Cp conformers is considered and rejected. A model of C5v symmetry can be brought into satisfactory agreement with the data. It is also found that a slip sandwich model obtained from the C5v model by moving sideways the ring which is at the greatest distance from Be, while keeping the two rings essentially parallel is compatible with the electron diffraction data. The best fit between experimental and calculated intensity curves is obtained with a model with a sideways slip of 0.8(1) Å. This model is similar to that indicated by the X-ray diffraction investigations by Wong and coworkers [4,5]. It is suggested that the potential energy of the molecule does not change much as the magnitude of the slip changes and that the molecule thus undergoes large amplitude vibration.  相似文献   

13.
Irradiation of the 30-electron Mo25-C5Me5)2(CO)4 and Re2(CO)10 in toluene solution (containing H2O) afforded (in 1–2% yields) a novel triangular metal cluster, (η5-C5Me5)3Mo3(CO)42-H)(η3-O) (1), which was characterized by a single-crystal X-ray diffraction study. Compound 1, of pseudo Cs-m symmetry, has a triangulo-Mo33-O) core with composite Mo---H---Mo and Mo---Mo electron-pair bonds along one unusually short edge (2.660(1) Å) and Mo--- electron-pair bonds along the other two edges (2.916(1) and 2.917(1) Å). The edge-bridged hydride ligand, which displays a characteristic high-field proton NMR resonance at δ −17.79 ppm, was not found from the crystallographic determination but was located via a quantitative potential-energy-minimization method. This procedure unambiguously established that the optimized hydrogen position, which corresponds to a distinct coordination site with identical Mo---H distances of 1.85 Å, is the only one that can be sterically occupied by a metal-bound hydride ligand. This 46-electron species is the first electron-deficient trimolybdenum cluster containing a monoprotonated Mo---Mo double bond; its existence is attributed to ligand overcrowding due to the bulky pentamethylcyclopentadienyl rings. Black (η5- C5Me5)3Mo3(CO)42-H)(η3-O) · 1/2THF crystallizes with two formula species in a triclinic unit cell of P1 symmetry with a 8.603(4), b 11.115(4), c 19.412(11) Å, 80.69(4)°, β 101.10(4)°, and γ 98.88(3)° at −40° C. Least-squares refinement (RAELS with 221 variables) of one independent Mo3 molecule and a centrosymmetrically-disordered THF molecule converged at R1(F) 5.62%, R2(F 6.88% for 8460 independent diffractometry data (I0 ρ 3σ(I0 collected at −40° C with Mo-K radiation  相似文献   

14.
A new 1.75 μm infrared emission transition of Y2O3:Er3+ is assigned to the 4S3/2 → 4I9/2 transition of Er3+ ions situated at the C2 sites of cubic RE2O3 (RE = Y, Gd, Lu). The intensities of features in the 1.54 μm 4I15/24I13/2 absorption transition due to Er3+ at S6 and C2 sites are consistent with the site occupation ratio and the relative magnetic dipole–electric dipole intensity contributions of Er3+ at the different sites. The 1.54 μm emission lines are predominantly from Er3+ ions at C2 sites. The different behaviours of the emission intensities 1.75 and 1.54 μm groups with change in Er3+ dopant ion concentration, preparation technique, Yb3+ co-doping, temperature change and different excitation line are rationalized.  相似文献   

15.
The equilibrium geometry and the potential energy and dipole moment surfaces have been determined for the cis and trans isomers of the HONO molecule by an ab initio Moller–Plesset (MP2) calculation with a wide set of atomic orbitals. The multidimensional anharmonic vibrational Schrodinger equations are solved using the variational method with the Hamiltonian and wave functions written in the normal coordinates of cis and trans isomers. All one- and two-dimensional and a number of three-dimensional vibrational problems are solved to obtain the energy levels and vibrational eigenfunctions. The frequencies and intensities for the fundamental, overtone and some combination bands are determined in good agreement with the available experimental results. The calculation shows the strength of coupling between different vibrational modes and reveals the presence of strong resonances between the (v1, v3, v6) and (v1, v3−1, v6+2) states of cis-HONO. This fact may be important for understanding the energy redistribution between the intermolecular degrees of freedom. The magnitude and direction of vibrationally averaged ground-state dipole moment of both isomers, as well as the direction of transition dipole moments, are in good agreement with the experimental findings. The changes in the values of dipole moment and some geometrical parameters of cis- and trans-HONO on vibrational excitation are also computed.  相似文献   

16.
The geometric structures and conformational properties of trifluoromethanesulfonic anhydride, (CF3SO2)2O, and bis(trifluoromethylsulfonyl)difluoromethane, (CF3SO2)2CF2 have been studied by gas electron diffraction (GED) and ab initio calculations (HF/3–21G*). The calculations predict for both systems two stable conformers with C2 symmetry and one with C1 symmetry. In both compounds structures with C2 symmetry and dihedral angles SOSC ≈ 100° ((CF3SO2)2O) and SCSC ≈ 150° ((CF3SO2)2CF2) are lowest in energy. According to the GED analyses the dominant conformer of (CF3SO2)2O possesses C2 symmetry with SOSC dihedral angles of 99.1(14)°. The presence of up to 30% of the two other conformers cannot be excluded; for (CF3SO2)2CF2 only one conformer with C2 symmetry and SCSC dihedral angles of 143(2)° is observed. A complete set of geometric parameters is given.  相似文献   

17.
Crystals of the adduct, BrF3·AuF3, are monoclinic, with: a=5.356(4) Å, b=5.766(4) Å, c=8.649(3) Å, β=101.39(4)°, V=261.8(5) Å3, z=2, Dc=4.96 g/cm3. An ordered structure in P21 was found, but is of low precision (R1=0.082) because of crystal deformation. The structure has planar BrF4 units sharing F ligands cis with planar AuF4 groups, each AuF4 being similarly linked to two BrF4. This generates a ribbon, creased at the bridging F along y, the gold on one side of the crease, the bromine on the other. Such ribbons are stacked parallel along y, with nearest neighbors related by twofold screw axes. This sandwiches each AuF4 strip of a ribbon symmetrically between like strips. These contacts between the Au-strips bring up, to each Au-atom, two “non-bridging Au–F ligands” of each of the two neighboring strips, to give eight coordination in F. The bromine side of the creased ribbon is unsymmetrically sandwiched between a screw-axis related relative, and the edge of a Au-containing strip oriented almost perpendicular to it. This brings two non-bridging F of the nearest-strip BrF4 and two non-bridging F of the AuF4 strip into the secondary cordination sphere of the Br atom. Raman spectra of the BrF3·AuF3, molecular BrF3, and polymeric AuF3 suggest that the Br–F and Au–F stretching vibrations of BrF3·AuF3 are shifted slightly from those of the parent BrF3 and AuF3, and indicate some BrF2+AuF4 character.  相似文献   

18.
The mechanism of the H2NO(2B1)→NO(2Π)+H2 reaction has been examined using ab initio molecular orbital methods. Ground-state and first-excited-state potential surfaces were plotted at the FOCI/cc-pVTZ level of theory as functions of two appropriate internal degrees of freedom. A conical intersection was found on the Cs pathway that is symmetric with respect to the plane perpendicular to the molecular plane of C2v H2NO(2B1). It is therefore considered that trajectories that start from H2NO(2B1) towards the product region detour around the conical intersection, pass through the neighborhood of the transition state that is located at the saddle point on the Cs pathway, and finally reach the products, NO(2Π)+H2. Thus we can explain the mechanism of the H2NO(2B1)→NO(2Π)+H2 reaction, which has remained unclear to date.  相似文献   

19.
A comprehensive set of theoretical Coster–Kronig and fluorescence yields are presented for atomic numbers 18≤Z≤100. These quantities are based on ab initio relativistic calculations. Agreement with experimental values is fair for ω1 and generally good for ω2, ω3 (Z≥54) [1]. Therefore, atomic L shell fluorescence (ω1, ω2, ω3) and Auger yields (a1, a2 and a3) for some elements in the atomic number range 59≤Z≤85 were determined. These selected measured semi-empirical values were also fitted by least squares to polynomials in the Z of the form ∑nanZn and compared with theoretical and with earlier fitted values.  相似文献   

20.
The geometric structures and conformational properties of trifluoromethanesulfonic anhydride, (CF3SO2)2O, and bis(trifluoromethylsulfonyl)difluoromethane, (CF3SO2)2CF2 have been studied by gas electron diffraction (GED) and ab initio calculations (HF/3–21G*). The calculations predict for both systems two stable conformers with C2 symmetry and one with C1 symmetry. In both compounds structures with C2 symmetry and dihedral angles SOSC ≈ 100° ((CF3SO2)2O) and SCSC≈ 150° ((CF3SO2)2CF2 are lowest in energy. According to the GED analyses the dominant conformer of (CF3SO2)2O2 possesses C2 symmetry with SOSC dihedral angles of 99.1(14)°. The presence of up to 30% of the two other conformers cannot be excluded; for (CF3SO2)2CF2 only one conformer with C2 symmetry and SCSC dihedral angles of 143(2)° is observed. A complete set of geometric parameters is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号