首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The density of tetrapropylammonium bromide aqueous solutions has been measured with six-figure precision at T/K – 273.15 = (5, 10, 15, 20, 25, 30, and 35) and molality from 0.05 to 8 (at 18 closely spaced intervals) using a vibrating-tube densitometer. The apparent molar volume, as well as both the solute and solvent partial molar volumes and their derivatives with respect to temperature, were calculated and compared with those of the tetra-alkyl ammonium (R4N+, R: from methyl to butyl) halide solution series to detect structural transformations due to hydration and hydration interactions.Except for Me4N–Cl, the results indicate progressive solvent structure enhancement in the R4N+ series and significantly different solute–solvent ratios for the “ideal” spatial (“interstitial”) and energetic co-sphere arrangements.  相似文献   

2.
17O-NMR spin-lattice relaxation timesT 1 of D2O molecules were measured at 5–85°C in D2O solutions of alkali metal halides (LiClCsCl, KBr, and KI), DCl, KOD, Ph4PCl, NaPh4B, and tetraalkylammonium bromides (Me4NBrAm4NBr) in the concentration range 0.1–1.4 mol-kg–1 TheB-coefficients of the electrolytes obtained from the concentration dependence of relaxation ratesR 1=1/T1 were divided into the ionicB-coefficients by three methods: (i) the assumption ofB (K+)=B(Cl), (ii) the assumption ofB(Ph4P+)=B(Ph4B), and (iii) the use ofB(Br) obtained from a series ofB(R4NBr). It was found that Methods (ii) and (iii) resulted in an abnormal temperature dependence of theB-coefficients of alkali metal ions and a negative values of rotational correlation times c at lower temperatures for hydroxide and halide ions. These results suggest that the methods based on the van der Waals volume are not adequate for the ionic separation of NMRB-coefficients. From the analysis using the assumption ofB(K+)=B(Cl), it was found that D3O+, OD, and Me4N+ ions are the intermediates between structure makers and breakers, and that the hydrophobicity of phenyl groups is weaker than that of alkyl groups due to the interactions between water molecules and -electrons in phenyl groups.  相似文献   

3.
The role of aqueous media in the stabilization of globular proteins and formation of gels was studied by absorption millimeter spectroscopy. This method allowed to measure bound water, the fraction of water which had decreased rotational mobility owing to the presence of solute. Hydration data for globular proteins were compared with data obtained previously for low-weight molecules and groups. It was found that rotational mobility of water molecules in the hydration shells of various kinds of solutes (groups) decreased in the following order: water structure breaking compounds>polar groups>unfolded proteins>globular proteins>non-polar groups. Time courses of the storage modulus were determined for the chemical acidification by glucono-δ-lactone (GDL) of milk samples prepared from skimmed milk powder (SMP). Gelation of unheated milk was a monotonous process that started at pH 4.9. Heat-treated milk from SMP (16 and 14 g per 100 ml) acidified by GDL (3 g per 100 ml) at 43 °C gave non-monotonous kinetics of gelation with two phases corresponding to the mechanisms induced by denatured whey proteins at pH>5 and by casein–casein interactions at pH 4.8–4.9. For heat-treated milk, measurement of bound water gave two stages of decrease in water mobility. Additional hydration of SMP during acidification gave 0.15–0.2 g and 0.8 g bound H2O per gram of SMP for unheated and heat-treated milk, respectively.  相似文献   

4.
5.
Diffusion coefficients of an aqueous system containing cadmium chloride 0.100 mol · dm−3 and lactose at different concentrations at 25 °C have been measured, using a conductimetric cell and an automatic apparatus to follow diffusion. The cell relies on an open-ended capillary method and a conductimetric technique is used to follow the diffusion process by measuring the resistance of a solution inside the capillaries, at recorded times. From these results and by ab initio calculations, it was possible to obtain a better understanding of the effect of lactose on transport of cadmium chloride in aqueous solutions.  相似文献   

6.
7.
8.
Ultrasonic velocity maxima, as a function of alcohol concentration in aqueous methanol solution, have been determined for solutions of a number of mono- and polyhydroxyalcohols. The location of the maximum relative to that in the water-methanol system alone was related to the hydration of the solute molecule. Calculated hydration numbers are linearly correlated with the number of hydroxyl groups in the case of polyhydroxyalcohols, and with the surface area of the non-polar regions in the case of monohydroxyalcohols.  相似文献   

9.
Inelastic light scattering experiments demonstrate the existence of a conformational change upon ionization of a weak acid polyelectrolyte in aqueous salt solutions. The swelling of the polymeric coil occurs at a neutralization degree increasing with molecular weight.  相似文献   

10.
11.
With reported values ranging from about 3 to 16, the aggregation number of aqueous sodium cholate micelles is not well established. To provide new information on the aggregation of a bile salt, Taylor dispersion is used to measure the binary mutual diffusion coefficientD of aqueous sodium cholate at concentrations from 0.001 to 0.100 mol-dm-3 at 25°C. The results are compared with calculatedD values based on the association equilibrium nCholate- + βnNa+ ⇋ (NaβCholate) n (β-1)n wheren is the aggregation number and β is the degree of sodium counterion binding. Fitting the association model to the diffusion data givesn = 3.9±0.6 and β = 0.21 ±0.08. In contrast to the drop inD with increasing concentration of sodium cholate, the diffusion coefficients of sodium dodecylsulfate and other long-chain ionic surfactants increase above the critical micelle region. The ent diffusion behavior of the surfactants is related to changes in the driving forces and mobilities caused by ion association.  相似文献   

12.
《Chemical physics letters》1987,142(5):405-408
Neutron diffraction and nuclear magnetic relaxation yield complementary information on the interaction of ions and water molecules in solution. In the present study the two techniques are used to investigate the influence of poly (ethyleneoxide) on the Cl hydration sphere. It is concluded that the important effect of PEO on the 35Cl relaxation rate is due to the occurrence of a long correlation time rather than structural changes.  相似文献   

13.
Slowly diffusing water molecules were found by quasi-elastic neutron scattering (QENS) in a sodium dodecyl sulfate (SDS) micellar solution, and both their diffusion coefficient (4.33 x 10(-6) cm2 x s(-1)) and mole fraction (0.057) were determined. After successfully checking the mean slowing down of solvent molecules by the gradient compensated stimulated spin-echo (GCSTE) pulse sequence NMR method, a similar effect was observed with this technique in the solvent phase of dodecyl trimethylammonium bromide (DTAB) and differing chain length (X = 12, 20, 30, and 40) ethoxylated nonyl phenol (9NX) micellar systems. Following the literature, the experimental results are qualitatively explained by assuming that, apart from ionic hydration, H-bonds may form between the solvent molecules and the O or N atoms present in the hydrophilic (head)groups of the micelle-forming monomers.  相似文献   

14.
IR spectroscopy is a powerful tool for investigating the structure of aqueous systems. Changes in vibrational frequencies and intensities of the absorption band provide information about the structure of the associated water molecules. The water molecule has C2v symmetry when the intermolecular interaction is symmetrical to both OH bonds as in 2:1 complexes. In this case the frequency difference of the two stretching vibrations ν3 and ν1 is nearly constant. If the intermolecular interaction is unsymmetric to the OH bonds as in 1:1 complexes the band separation of ν3 and ν1 increases markedly in relation to the increase of the unsymmetry. The IR overtone region is more suitable for the study of the structure of liquid water or aqueous solutions than the IR fundamental region. The reason is the higher intensity of the absorption bands of the “free” OH vibration compared to the H-bonded OH groups. The ratio of the intensities is inverse in the fundamental region. Furthermore it is possible to measure quantitatively in the overtone region and there are no experimental difficulties. The results are estimations of the H-bonded and the free OH groups in different aqueous systems.  相似文献   

15.
We present measurements of water uptake and release by single micrometre-sized aqueous sucrose particles. The experiments were performed in an electrodynamic balance where the particles can be stored contact-free in a temperature and humidity controlled chamber for several days. Aqueous sucrose particles react to a change in ambient humidity by absorbing/desorbing water from the gas phase. This water absorption (desorption) results in an increasing (decreasing) droplet size and a decreasing (increasing) solute concentration. Optical techniques were employed to follow minute changes of the droplet's size, with a sensitivity of 0.2 nm, as a result of changes in temperature or humidity. We exposed several particles either to humidity cycles (between ~2% and 90%) at 291 K or to constant relative humidity and temperature conditions over long periods of time (up to several days) at temperatures ranging from 203 to 291 K. In doing so, a retarded water uptake and release at low relative humidities and/or low temperatures was observed. Under the conditions studied here, the kinetics of this water absorption/desorption process is controlled entirely by liquid-phase diffusion of water molecules. Hence, it is possible to derive the translational diffusion coefficient of water molecules, D(H(2)O,) from these data by simulating the growth or shrinkage of a particle with a liquid-phase diffusion model. Values for D(H(2)O)-values as low as 10(-24) m(2) s(-1) are determined using data at temperatures down to 203 K deep in the glassy state. From the experiment and modelling we can infer strong concentration gradients within a single particle including a glassy skin in the outer shells of the particle. Such glassy skins practically isolate the liquid core of a particle from the surrounding gas phase, resulting in extremely long equilibration times for such particles, caused by the strongly non-linear relationship between concentration and D(H(2)O). We present a new parameterization of D(H(2)O) that facilitates describing the stability of aqueous food and pharmaceutical formulations in the glassy state, the processing of amorphous aerosol particles in spray-drying technology, and the suppression of heterogeneous chemical reactions in glassy atmospheric aerosol particles.  相似文献   

16.
A series of neutron diffraction experiments has been carried out on solutions of NiCl2, NaCl and BaCl2 in heavy water. Both the concentration of the solute and the degree of isotopic enrichment were varied in order to investigate whether the multiple-pattern method, which has been used previously to determine the partial structure factors for simple liquids, can be applied to aqueous solutions. It is concluded that the multiple-pattern method is feasible. Some general comments on the structural information contained in the single-pattern data are made.  相似文献   

17.
The nature and structure of large-scale fluctuations in aqueous glucose solutions were studied by dynamic light scattering. The two-component model of solution was used. The supramolecular structure of the solutions was determined and their phase diagram at low concentrations was schematically constructed. The volume of clusters in solution was calculated.  相似文献   

18.
Methacrylic acid (MA) and [3-(methacryloylamino)propyl]trimethylammonium chloride (MAPTAC) were polymerized to give amphoteric copolymers with various compositions. The structure and H-bonding of water in an aqueous solution of the copolymer were analyzed using the contours of the O-H stretching in the polarized Raman spectra. For comparison, the H-bonded network structure of aqueous solutions of homopolymers (polyMA and polyMAPTAC) was also examined. From the relative intensity of the collective band (C value) corresponding to a long range coupling of the O-H stretching in the aqueous polymer solutions, the number of H-bonds disrupted due to the presence of one monomer residue of the polymers (Ncorr) was determined. The Ncorr value for polyMA was largely positive, and with an increase in the content of the MAPTAC residue, the Ncorr value became smaller, and after passing a minimum (which was still slightly positive) at a roughly equivalent molar ratio, the Ncorr value increased again. This is in significant contrast with the larger positive Ncorr values for the homopolymers (both polyMA and polyMAPTAC), and other ordinary polyelectrolytes such as sodium polyethylenesulfonate, poly-L-lysine hydrobromide and sodium polyacrylate. Furthermore, the Ncorr value for the copolymer (MA ratio MAPTAC = 56:44) became much smaller by the neutralization of MA residues in the copolymer with sodium hydroxide, and comparable to those for neutral polymers such as poly(ethylene glycol) and poly(N-vinylpyrrolidone) and zwitterionic polymers such as poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) and poly[3-sulfo-N,N-dimethyl-N-(3'-methacryloylaminopropyl)propanaminium inner salt]. The present results clearly indicate that the amphoteric polymers with comparative contents of cationic and anionic groups do not significantly disturb the H-bonded network structure of water, probably due to the counteraction of the electrostatic hydration effect by the proximity between the anionic and cationic side groups.  相似文献   

19.
A dynamic method for investigating the mechanism of permeation and diffusion through polymers has been explored. The permeation cell consists of two compartments separated by the membrane. The permeant (gas, vapor, or liquid) is introduced into one compartment; a carrier gas (helium) flows at constant rate through the other and sweeps the permeant which diffuses through the membrane to the thermal conductivity detector. Both compartments are at atmospheric pressure; thus no or little membrane support is required, and leakage problems are minimal. Moreover, the same membrane can be used over a wide temperature range and for diverse permeants. The detector signal is at any instant proportional to the permeation rate. A simple mathematical formalism for deriving the diffusion coefficient from the transient permeation rates has been developed. The measured diffusion and permeability coefficients of CO2, O2, and N2 through low-density polyethylene closely agree with literature values. Permeation of hexane and benzene through polyethylene follows a complex diffusion law, and the rate depends on the thermal history of the system. The dynamic method is particularly suited to the study of transitions in polymers. Changes in permeation rates, usually occurring at transition points, can easily be discovered by slow temperature scanning of the system.  相似文献   

20.
Solutions containing guanidinium chloride (GdmCl), or equivalently guanidine hydrochloride (GdnHCl), are commonly used to denature macromolecules such as proteins and DNA in, for example, microfluidics studies of protein unfolding. To design and study such applications, it is necessary to know the diffusion coefficients for GdmCl in the solution. To this end, we use molecular dynamics simulations to calculate the diffusion coefficients of GdmCl in water and in water-ethanol solutions, for which no direct experimental measurements exist. The fully atomistic simulations show that the guandinium cation Gdm (+) diffusion decreases as the concentration of both Gdm (+) and ethanol in the solution increases. The simulations are validated against available literature data, both transformed measured viscosity values and computed diffusion coefficients, and we show that a prudent choice of water model, namely TIP4P-Ew, gives calculated diffusion coefficients in good agreement with the transformed measured viscosity values. The calculated Gdm (+) diffusion behavior is explained as a dynamic mixture of free cation, stacked cation, and ion-paired species in solution, with weighted contributions to Gdm (+) diffusion from the stacked and paired states helping explain measured viscosity data in terms of atom-scale dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号