首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cation influence on the water molecule in the Li+·H2O, Be2+·H2O, Mg2+·H2O and A13+·H2O complexes has been studied by means of quantum-mechanical ab initio calculations. A number of general trends are noted. (1) The calculated equilibrium water O-H distances increase with increasing binding energies, i.e. in the order Li+, Mg2+, Be2+, Al3+. The H-O-H angles differ by about ±1 ° from the calculated equilibrium angle for the free H2O molecule; the variation has no systematic trend. (2) The electron density redistribution accompanying the change in the internal H2O geometry in these complexes is considerably smaller than the redistribution brought about by the direct influence of the external field. (3) The harmonic O-H stretching force constant decreases with increased cation-water bonding. (4) The qualitative features of the density changes are very similar for the four complexes. The magnitudes of the interactions follow the relation Li+ < Mg2+ < Be2+ Al3+. An increased polarization of the H2O molecule occurs with electron migration from the H atoms towards the O atom and an accumulation of electron charge approximately at the centre of the Men+—O bond, especially in Be2+·H2O and A13+·H2O. An electron deficiency is found in the lone-pair region.  相似文献   

2.
The experimental approaches to estimation of comparative electronegativity and chemical hardness of organometallic groups have been proposed. Qualitative data on the electronegativity of L nM groups were obtained from 19F NMR study of model systems 4‐FC6H4QMLn (Q = CC, N(R), O, C(O)O, S), (4‐FC6H4)3 SnML n and (4‐FC6H4)3SnQML n (Q = O, S), containing a great variety of different organometallic groups containing transition or heavy main‐group metals. The data on chemical hardness of L nM groups were obtained from NMR study of distribution of different L nM groups between hard and soft anions. The following basic results have been obtained. (1) The relative electronegativity and chemical hardness of L nM groups can change in parallel or not with the electronegativity and hardness of the central metal atom. (2) The substituents in Ar can substantially modify electronegativity and hardness of Ar nM groups; the influence of Ar groups has an inductive nature; the increase in electron‐donating ability of aryl ligands enhances the hardness of Ar nM cations. (3) The relative electronegativity and hardness of L nM groups in L nMX are invariant and do not depend on X.  相似文献   

3.
The molecule of the title compound, C18H18O2, is a substituted cyclopropane ring. The electron density in this molecule has been determined by refining single‐crystal X‐ray data using scattering factors derived from quantum mechanical calculations. Topological analysis of the electron densities in the three cyclopropane C—C bonds was carried out. The results show the effects of this substitution on these C—C bonds.  相似文献   

4.
H2O和OH在UO(100)表面吸附的密度泛函研究   总被引:1,自引:0,他引:1  
运用密度泛函理论中的广义梯度近似(GCA)的PW91方法结合周期性平板模型,研究了H2O分子和OH在UO(100)表面上的吸附.通过对不同吸附位的吸附能和几何结构参数的计算和比较发现:水分子在UO(100)表面的吸附为化学吸附,水分子平面与UO(100)表面夹角为15°的吸附构型最稳定,吸附能最大,近89 kJ·mol-1.对H2O吸附前后的态密度分析可知,H2O通过其O原子的P轨道与底物U原子的d轨道作用.本文还进一步探讨H2O在UO(100)表面的解离机理.  相似文献   

5.
6.
7.
The hydrogen bonding complexes formed between the H2O and OH radical have been completely investigated for the first time in this study using density functional theory (DFT). A larger basis set 6‐311++G(2d,2p) has been employed in conjunction with a hybrid density functional method, namely, UB3LYP/6‐311++G(2d,2p). The two degenerate components of the OH radical 2Π ground electronic state give rise to independent states upon interaction with the water molecule, with hydrogen bonding occurring between the oxygen atom of H2O and the hydrogen atom of the OH radical. Another hydrogen bond occurs between one of the H atoms of H2O and the O atom of the OH radical. The extensive calculation reveals that there is still more hydrogen bonding form found first in this investigation, in which two or three hydrogen bonds occur at the same time. The optimized geometry parameter and interaction energy for various isomers at the present level of theory was estimated. The infrared (IR) spectrum frequencies, IR intensities, and vibrational frequency shifts are reported. The estimates of the H2O · OH complex's vibrational modes and predicted IR spectra for these structures are also made. It should be noted that a total of 10 stationary points have been confirmed to be genuine minima and transition states on the potential energy hypersurface of the H2O · HO system. Among them, four genuine minima were located. © 2002 Wiley Periodicals, Inc. Int J Quantum Chem, 2002  相似文献   

8.
The article presents the translational diffusion coefficients calculated for dichloroalkanes series C n H2 n Cl2 (where n =?6, 8, 10, 12) in the liquid state, with the use of the Perrin and Agishev model. It has been shown that the molecules of dichloroalkanes assume a mutually parallel arrangement in three possible coordinations. The model of arrangement, orientations and packing of the molecules has been presented. The activation parameters of the compounds studied have been discussed. The physical and structural properties of the liquids studied (macroscopic density, electron density and molecular weight) are correctly described within the van der Waals model predicting their orientations and packing. The formulae linking the diffusion, viscosity and temperature for the liquids have been presented. The assumption that each molecule can be approximated by an ellipsoid of the semiaxes lengths a, b and c has been justified. The translations become slower with increasing volume and weight of the molecule. The diffusion coefficients decrease with increasing molecular weight.  相似文献   

9.
The thiourea S,S‐dioxide molecule is recognized as a zwitterion with a high dipole moment and an unusually long C? S bond. The molecule has a most interesting set of intermolecular interactions in the crystalline state—a relatively strong O???H? N hydrogen bond and very weak intermolecular C???S and N???O interactions. The molecule has Cs symmetry, and each oxygen atom is hydrogen‐bonded to two hydrogen atoms with O???H? N distances of 2.837 and 2.826 Å and angles of 176.61 and 158.38°. The electron density distribution is obtained both from Xray diffraction data at 110 K and from a periodic density functional theory (DFT) calculation. Bond characterization is made in terms of the analysis of topological properties. The covalent characters of the C? N, N? H, C? S, and S? O bonds are apparent, and the agreement on the topological properties between experiment and theory is adequate. The features of the Laplacian distributions, bond paths, and atomic domains are comparable. In a systematic approach, DFT calculations are performed based on a monomer, a dimer, a heptamer, and a crystal to see the effect on the electron density distribution due to the intermolecular interactions. The dipole moment of the molecule is enhanced in the solid state. The typical values of ρb and Hb of the hydrogen bonds and weak intermolecular C???S and N???O interactions are given. All the interactions are verified by the location of the bond critical point and its associated topological properties. The isovalue surface of Laplacian charge density and the detailed atomic graph around each atomic site reveal the shape of the valence‐shell charge concentration and provide a reasonable interpretation of the bonding of each atom.  相似文献   

10.
The effective one-electron distributions of bonded atoms obtained from the “stockholder” partition of the molecular two-electron density are reported. These two-electron stockholder (S) atoms are compared with their one-electron analogs represented by the corresponding Hirshfeld (H) one-electron stockholder pieces of the molecular electron density. The influence of the exchange (Fermi) and Coulomb correlation between electrons on the resultant shapes of bonded atoms is investigated The vertical (for the fixed molecular electron density) and horizontal (involving the electron density displacement) correlation influences on the two-electron stockholder atoms are examined. The two sets of bonded stockholder atoms in the near-dissociation bond-elongated diatomics are compared for different approximations of the electron correlation effects. The cluster components in atomic resolution of the S-partitioning scheme are investigated for illustrative homonuclear and heteronuclear diatomics: H2, LiH, HF, LiF, and N2. This framework facilitates an understanding of the origins of the observed differences between the S and H variants of Atoms-in-Molecules. With the exception of hydrogen atoms, especially in light molecules, the two sets of bonded atoms were found to be practically identical. For H2 and LiH the S atoms were shown to exhibit a distinctly higher degree of the bonding character, compared to their H analogs. The main electron correlation effects have been found to be well represented already at the exchange-only level, e.g., in the unrestricted Hartree–Fock (UHF) theory. An inclusion of the extra vertical Coulomb correlation exerts a marginal moderating influence on the ionic/covalent composition of the chemical bond already predicted by the UHF approximation, in the direction of a slightly more covalent (less ionic) bond character. The horizontal shifts of the molecular density due to Coulomb correlation, relative to the UHF reference, often act in the opposite direction.  相似文献   

11.
Ab initio and density functional theory (DFT) methods have been employed to study the molecular structural conformations and hydrated forms of both salicylamide (SAM) and O‐hydroxybenzoyl cyanide (OHBC). Molecular geometries and energetics have been obtained in the gaseous phase by employing the Møller–Plesset type 2 MP2/6‐311G(2d,2p) and B3LYP/6‐311G(2d,2p) levels of theory. The presence of an electron‐releasing group (SAM) leads to an increase in the energy of the molecular system, while the presence of an electron‐withdrawing group (OHBC) drastically decreases the energy. Chemical reactivity parameters (η and μ) have been calculated using the energy values of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) obtained at the Hartree–Fock (HF)/6‐311G(2d,2p) level of theory for all the conformers and the principle of maximum hardness (MHP) has been tested. The condensed Fukui functions have been calculated using the atomic charges obtained through the natural bond orbital (NBO) analysis scheme for all the optimized structures at the B3LYP/6‐311G(2d,2p) level of theory, and the most reactive sites of the molecules have been identified. Nuclear magnetic resonance (NMR) studies have been carried out at the B3LYP/6‐311G(2d,2p) level of theory for all the conformers in the gaseous phase on the basis of the method of Cheeseman and coworkers. The calculated chemical shift values have been used to discuss the delocalization activity of the electron clouds. The dimeric structures of the most stable conformers of both SAM and OHBC in the gaseous phase have been optimized at the B3LYP/6‐311G(2d,2p) level of theory, and the interaction energies have been calculated. The most stable conformers of both compounds bear an intramolecular hydrogen bond, which gives rise to the formation of a pseudo‐aromatic ring. These conformers have been allowed to interact with the water molecule. Special emphasis has been given to analysis of the intermolecular hydrogen bonds of the hydrated conformers. Self‐consistent reaction field (SCRF) theory has been employed to optimize all the conformers in the aqueous phase (ε = 78.39) at the B3LYP/6‐311G(2d,2p) level of theory, and the solvent effect has been studied. Vibrational frequency analysis has been performed for all the optimized structures at MP2/6‐311G(2d,2p) level of theory, and the stationary points corresponding to local minima without imaginary frequencies have been obtained for all the molecular structures. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

12.
Density functional theory method has been employed to investigate the adsorption of H2 molecule and H atom on α‐U(001) surface. There exist four initial sites [top (A), triangle‐center (B), long‐bridge (C), and short‐bridge (D)] for H2 and H atom adsorptions on α‐U(001) surface. The Eads (adsorption energy) values on the top sites of H2‐U(001) configurations are around ?0.666 eV, and H2 molecule has been elongated but not broken into H atoms. For the other three sites, the Eads values are around ?1.521 eV. The long‐bridge site is the most reactive site for H2 decomposing. For the H‐U(001) configurations, the Eads are around ?2.904 eV. Top site and short‐bridge site are the most reactive sites for the H atom react on the α‐U(001) surface. Our work reveals that the different reactive sites play discrepant effects on hydrogenation process. Geometric deformations, diffusion paths, and partial density of states of H2‐U(001) and H‐U(001) configurations have also been analyzed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
14.
Reactivity dynamics and stability of a confined hydrogen molecule in presence of an external magnetic field has been studied using quantum fluid density functional theory. Dynamic profiles of various reactivity parameters such as hardness, electrophilicity, magnetizability, phase volume, entropy, etc. have been studied within a confined environment. Responses in the reactivity parameters as well as the associated electronic structure principles validate the stability of the confined H2 molecule in ground and excited states in presence of an external magnetic field. Confinement to the system has been imposed by the Dirichlet type boundary condition. Confinement and excitation act in opposite directions. Ground state type dynamics is obtained on simultaneous electronic excitation and confinement. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
A flexible model for generating the molecular wave function and electron density for diatomic molecules is developed employing the quadratic anharmonic oscillator and Morse potential. The chemical hardness, Fukui function, and polarizability were calculated using the electron density of the molecules, and the values are found to be reasonably good. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

16.
The quasiparticle energy of the H2 molecule is calculated by using the GW method, in which the self‐energy operator fully depends on the frequency. The initial Green function G0 is constructed from the wave function obtained by the Hartree–Fock approximation (HFA) and local density approximation (LDA) in the framework of the density functional theory (DFT). From the results obtained we have shown that the wave function from the DFT–LDA is more effective than that from the HFA for G0. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem 84: 348–353, 2001  相似文献   

17.
Model core potential computations were performed for Rh2, Rh3, and Rh4 clusters and their respective cations and anions using the linear combination of Gaussian‐type orbital, nonlocal spin density method. The optimized geometries, electronic and magnetic structures, binding and fragmentation energies, adiabatic ionization potentials, and electron affinities were determined. Results show that the ionization potentials, electron affinities, binding energies, and magnetic moments decrease with the cluster size. For Rh2 and Rh3 the most stable structures exhibit ferromagnetic properties, while Rh4 in its ground state is found to be paramagnetic. The structures of minimum energy for the charged species often differs from the corresponding neutral one. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

18.
A detailed computational study of the deamination reaction of melamine by OH, n H2O/OH, n H2O (where n = 1, 2, 3), and protonated melamine with H2O, has been carried out using density functional theory and ab initio calculations. All structures were optimized at M06/6‐31G(d) level of theory, as well as with the B3LYP functional with each of the basis sets: 6‐31G(d), 6‐31 + G(d), 6‐31G(2df,p), and 6‐311++G(3df,3pd). B3LYP, M06, and ω B97XD calculations with 6‐31 + G(d,p) have also been performed. All structures were optimized at B3LYP/6‐31 + G(d,p) level of theory for deamination simulations in an aqueous medium, using both the polarizable continuum solvation model and the solvation model based on solute electron density. Composite method calculations have been conducted at G4MP2 and CBS‐QB3. Fifteen different mechanistic pathways were explored. Most pathways consisted of two key steps: formation of a tetrahedral intermediate and in the final step, an intermediate that dissociates to products via a 1,3‐proton shift. The lowest overall activation energy, 111 kJ mol?1 at G4MP2, was obtained for the deamination of melamine with 3H2O/OH?.  相似文献   

19.
Temporal evolution of local and global hardness during an ion-atom collision process has been studied within a quantum fluid density functional framework. A dynamical variant of the maximum hardness principle has been found to be operative. Entropy maximises in the encounter regime. Time dependence of density and its laplacian provides important insights into the collision processvis-a-vis the hardness maximisation.  相似文献   

20.
A DFT analysis of the epoxidation of C2H4 by H2O2 and MeOOH (as models of tert‐butylhydroperoxide, TBHP) catalyzed by [Cp*MoO2Cl] ( 1 ) in CHCl3 and by [Cp*MoO2(H2O)]+ in water is presented (Cp*=pentamethylcyclopentadienyl). The calculations were performed both in the gas phase and in solution with the use of the conductor‐like polarizable continuum model (CPCM). A low‐energy pathway has been identified, which starts with the activation of ROOH (R=H or Me) to form a hydro/alkylperoxido derivative, [Cp*MoO(OH)(OOR)Cl] or [Cp*MoO(OH)(OOR)]+ with barriers of 24.9 (26.5) and 28.7 (29.2) kcal mol?1 for H2O2 (MeOOH), respectively, in solution. The latter barrier, however, is reduced to only 1.0 (1.6) kcal mol?1 when one additional water molecule is explicitly included in the calculations. The hydro/alkylperoxido ligand in these intermediates is η2‐coordinated, with a significant interaction between the Mo center and the Oβ atom. The subsequent step is a nucleophilic attack of the ethylene molecule on the activated Oα atom, requiring 13.9 (17.8) and 16.1 (17.7) kcal mol?1 in solution, respectively. The corresponding transformation, catalyzed by the peroxido complex [Cp*MoO(O2)Cl] in CHCl3, requires higher barriers for both steps (ROOH activation: 34.3 (35.2) kcal mol?1; O atom transfer: 28.5 (30.3) kcal mol?1), which is attributed to both greater steric crowding and to the greater electron density on the metal atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号