首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We previously reported a highly efficient protocol for bimetallic Ni–Al‐catalyzed hydroheteroarylation of styrene with benzimidazole based on C?H bond activation. We have now delineated the mechanism of this process, providing a rationale for an observed switch in regioselectivity in the presence of the Lewis acid, AlMe3. The present mechanistic study gives insights for the rational development of catalysts that exhibit required linear/branched selectivity.  相似文献   

3.
4.
Recently, the development of more sustainable catalytic systems based on abundant first‐row metals, especially nickel, for cross‐coupling reactions has attracted significant interest. One of the key intermediates invoked in these reactions is a NiIII–alkyl species, but no such species that is part of a competent catalytic cycle has yet been isolated. Herein, we report a carbon–carbon cross‐coupling system based on a two‐coordinate NiII–bis(amido) complex in which a NiIII–alkyl species can be isolated and fully characterized. This study details compelling experimental evidence of the role played by this NiIII–alkyl species as well as those of other key NiI and NiII intermediates. The catalytic cycle described herein is also one of the first examples of a two‐coordinate complex that competently catalyzes an organic transformation, potentially leading to a new class of catalysts based on the unique ability of first‐row transition metals to accommodate two‐coordinate complexes.  相似文献   

5.
An efficient catalytic system using 1‐benzyl‐4‐aza‐1‐azoniabicyclo[2.2.2]octane chloride and PdCl2 was developed for the cross‐coupling reaction of arylboronic acids with acyl chlorides. The catalytic amount of this homogeneous catalytic system affords the corresponding diaryl and alkyl aryl ketones in good to excellent yields under mild reaction conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
7.
PdPt bimetallic nanoparticles stabilized by 15‐membered triolefinic macrocycle‐stabilized poly(propylene imine) dendrimer (G3‐M(Pdx Pt10−x ) DSNs) have been prepared via synthesis of a 15‐membered triolefinic macrocycle‐modified third‐generation poly(propylene imine) dendrimer (G3‐M) and then synchronous ligand exchange with Pd(PPh3)4/Pt(PPh3)4 complexes. The structure and catalytic activity of the DSNs were characterized using Fourier transform infrared, 1H NMR, transmission electron microscopy, energy‐dispersive X‐ray and X‐ray photoelectron analyses. As a novel catalyst system, it can be concluded that the composition of the bimetallic nanoparticles has an influence on the catalytic activity of the hydrogenation reaction of acrylonitrile–butadiene rubber, which can be related to synergistic effect. Furthermore, the selectivity and recyclability of G3‐M(Pdx Pt10−x ) DSN catalyst are also discussed.  相似文献   

8.
The structure of a nickel complex of imidazoline–aminophenol (IAP) prepared from IAP with Ni(OAc)2 was elucidated as cis‐bis(imidazolineaminophenoxide) [Ni(IAP)2]. The [Ni(IAP)2] complex smoothly promoted catalytic asymmetric 1,4‐addition of 3′‐indolyl‐3‐oxindole to nitroethylene to provide chiral mixed 3,3′‐bisindoles with high enantioselectivities. Mechanistic studies using ESI‐MS analyses suggest that one IAP ligand dissociated from [Ni(IAP)2] to generate the Ni–enolate of 3′‐indolyl‐3‐oxindole. From the optically active 3,3′‐mixed indole adduct, biologically important 3′‐indolyl‐3‐pyrrolidinoindoline was successfully synthesized in a three‐step reaction sequence.  相似文献   

9.
A new nickel(II) σ‐aryl complex, trans‐chloro(9‐phenanthrenyl)bis(triphenylphosphine)nickel(II), was used as a precatalyst for the Suzuki–Miyaura coupling reactions of aryl chlorides. The catalytic conditions were optimized by investigating the cross‐coupling of p‐chloroanisole with phenylboronic acid. The results show that this complex is efficient for both electron‐rich and electron‐deficient aryl chlorides, though it gives better yields for activated arylboronic acids than deactivated ones. All isolated cross‐coupled biaryl products have been characterized by 1H and 13C NMR, and their spectral data are consistent with those reported. Side products from the coupling of arylboronic acid with the precatalyst complex have also been isolated and characterized, which is helpful for understanding the coupling mechanism. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
11.
D,L ‐3‐Methylglycolide (MG) was successfully polymerized with bimetallic (Al/Zn) μ‐oxo alkoxide as an initiator in toluene at 90 °C. The effect of the initiator concentration and monomer conversion on the molecular weight was studied. It is shown that the polymerization of MG follows a living process. A kinetic study indicated that the polymerization approximates the first order in the monomer, and no induction period was observed. 1H NMR spectroscopy showed that the ring‐opening polymerization proceeds through a coordination–insertion mechanism with selective cleavage of the acyl–oxygen bond of the monomer. On the basis of 1H NMR and 13C NMR analyses, the selective cleavage of the acyl–oxygen bond of the monomer mainly occurs at the least hindered carbonyl groups (P1 = 0.84, P2 = 0.16). Therefore, the main chain of poly(D,L ‐lactic acid‐co‐glycolic acid) (50/50 molar ratio) obtained from the homopolymerization of MG was primarily composed of alternating lactyl and glycolyl units. The diblock copolymers poly(ϵ‐caprolactone)‐b‐poly(D,L ‐lactic acid‐alt‐glycolic acid) and poly(L ‐lactide)‐b‐poly(D,L ‐lactic acid‐alt‐glycolic acid) were successfully synthesized by the sequential living polymerization of related lactones (ϵ‐caprolactone or L ‐lactide). 13C NMR spectra of diblock copolymers clearly show their pure diblock structures. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 357–367, 2001  相似文献   

12.
Polymeric nanocomposite@Pd is one of the crown jewels for the catalysis of cross‐coupling reactions. This Pd nanocomposite on various polymeric supports has been well established to catalyze cross‐coupling reactions, but its preparation supported on the surface of nanofibers has been largely overlooked. Herein, we report the preparation of a poly(acrylic acid) (PAA)/poly(vinyl alcohol) (PVA) nanofiber‐supported N‐heterocyclic carbene–Pd complex. The first step involves the preparation of PAA/PVA nanofibers using the electrospinning process. The second step comprises the reaction of water‐soluble poly(ethylene glycol)‐imidazole with modified PAA/PVA nanofibers followed by introduction of PdCl2 to achieve successfully the desired nanocomposite. The catalytic activity of this nanocomposite was examined in the expeditious synthesis of biaryl compounds using the Suzuki–Miyaura cross‐coupling reaction under mild reaction conditions. The composite offers multiple features such as good hydrophilic properties, high surface area, admirable potential in repeatability tests and being recyclable for several runs without significant loss in its activity under the optimum reaction conditions. Our results showed the superior applicability of this novel nanocatalyst in terms of conversion reaction, yields and turnover frequencies. The structure of the catalyst was characterized using a variety of techniques.  相似文献   

13.
Bimetallic macrocyclic complexes have attracted the attention of chemists and various organic ligands have been used as molecular building blocks, but supramolecular complexes based on semi‐rigid organic ligands containing 1,2,4‐triazole have remained rare until recently. It is easier to obtain novel topologies by making use of asymmetric semi‐rigid ligands in the self‐assembly process than by making use of rigid ligands. A new semi‐rigid ligand, 3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine (L), has been synthesized and used to generate two novel bimetallic macrocycle complexes, namely bis{μ‐3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine}bis[(methanol‐κO)(nitrato‐κ2O,O′)nickel(II)] dinitrate, [Ni2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (I), and bis{μ‐3‐[(pyridin‐4‐ylmethyl)sulfanyl]‐5‐(quinolin‐2‐yl)‐4H‐1,2,4‐triazol‐4‐amine}bis[(methanol‐κO)(nitrato‐κ2O,O′)zinc(II)] dinitrate, [Zn2(NO3)2(C17H14N6S)2(CH3OH)2](NO3)2, (II), by solution reactions with the inorganic salts M(NO3)2 (M = Ni and Zn, respectively) in mixed solvents. In (I), two NiII cations with the same coordination environment are linked by L ligands through Ni—N bonds to form a bimetallic ring. Compound (I) is extended into a two‐dimensional network in the crystallographic ac plane via N—H…O, O—H…N and O—H…O hydrogen bonds, and neighbouring two‐dimensional planes are parallel and form a three‐dimensional structure via π–π stacking. Compound (II) contains two bimetallic rings with the same coordination environment of the ZnII cations. The ZnII cations are bridged by L ligands through Zn—N bonds to form the bimetallic rings. One type of bimetallic ring constructs a one‐dimensional nanotube via O—H…O and N—H…O hydrogen bonds along the crystallographic a direction, and the other constructs zero‐dimensional molecular cages via O—H…O and N—H…O hydrogen bonds. They are interlinked into a two‐dimensional network in the ac plane through extensive N—H…O hydrogen bonds, and a three‐dimensional supramolecular architecture is formed via π–π interactions between the centroids of the benzene rings of the quinoline ring systems.  相似文献   

14.
The synthesis and structure of the first 1,2‐bis(NHSi)‐substituted ortho‐carborane [(LSi:)C]2B10H10 (termed SiCCSi) is reported (NHSi=N‐heterocyclic silylene; L=PhC(NtBu)2). Its suitability to serve as a reliable bis(silylene) chelating ligand for transition metals is demonstrated by the formation of [SiCCSi]NiBr2 and [SiCCSi]Ni(CO)2 complexes. The CO stretching vibration modes of the latter indicate that the SiII atoms in the SiCCSi ligand are even stronger σ donors than the PIII atoms in phosphines and CII atoms in N‐heterocyclic carbene (NHC) ligands. Moreover, the strong donor character of the [SiCCSi] ligand enables [SiCCSi]NiBr2 to act as an outstanding precatalyst (0.5 mol % loading) in the catalytic aminations of arenes, surpassing the activity of previously known molecular Ni‐based precatalysts (1–10 mol %).  相似文献   

15.
Rhythmic growth of ring‐banded spherulites in blends of liquid crystalline methoxy‐poly(aryl ether ketone) (M‐PAEK) and poly(aryl ether ether ketone) (PEEK) has been investigated by means of differential scanning calorimetry (DSC), polarized light microscopy (PLM), and scanning electron microscopy (SEM) techniques. The measurements reveal that the formation of the rhythmically grown ring‐banded spherulites in the M‐PAEK/PEEK blends is strongly dependent on the blend composition. In the M‐PAEK‐rich blends, upon cooling, an unusual ring‐banded spherulite is formed, which is ascribed to structural discontinuity caused by a rhythmic radial growth. For the 50:50 M‐PAEK/PEEK blend, ring‐banded spherulites and individual PEEK spherulites coexist in the system. In the blends with PEEK as the predominant component, M‐PAEK is rejected into the boundary of PEEK spherulites. The cooling rate and crystallization temperature have great effect on the phase behavior, especially the ring‐banded spherulite formation in the blends. In addition, the effects of M‐PAEK phase transition rate and phase separation rate on banded spherulite formation is discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3011–3024, 2007  相似文献   

16.
An asymmetric aza‐Diels–Alder reaction of 3‐vinylindoles with isatin‐derived ketimines has been developed. A series of spiroindolone derivatives were thus obtained in good to excellent yields with excellent enantioselectivity (up to 96 % yield and 99 % ee). Furthermore, the antimalarial compound NITD609 could be obtained in three steps with an overall yield of 40.6 %. Control experiments and operando IR experiments imply a concerted reaction pathway. The regioselectivity and exo selectivity result from π–π interactions between the two indoline rings of the two reactants.  相似文献   

17.
The synthesis of a block copolymer poly(vinyl chloride)‐b‐poly(n‐butyl acrylate)‐b‐poly(vinyl chloride) is reported. This new material was synthesized by single‐electron‐transfer/degenerative‐chain‐transfer‐mediated living radical polymerization (SET‐DTLRP) in two steps. First, a bifunctional macroinitiator of α,ω‐di(iodo)poly (butyl acrylate) [α,ω‐di(iodo)PBA] was synthesized by SET‐DTLRP in water at 25 °C. The macroinitiator was further reinitiated by SET‐DTLRP, leading to the formation of the desired product. This ABA block copolymer was synthesized with high initiator efficiency. The kinetics of the copolymerization reaction was studied for two PBA macroinitiators with number–average molecular weight of 10 k and 20 k. The relationship between the conversion and the number–average molecular weight was found to be linear. The dynamic mechanical thermal analysis suggests just one phase, indicating that copolymer behaves as a single material with no phase separation. This methodology provides the access to several block copolymers and other complex architectures that result from combinations of thermoplastics (PVC) and elastomers (PBA). From industrial standpoint, this process is attractive, because of easy experimental setup and the environmental friendly reaction medium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3001–3008, 2006  相似文献   

18.
19.
Novel nickel(II) bisbenzimidazole complexes were prepared via a three‐step synthetic procedure consisting of aniline/diacid condensation, ligand N‐alkylation, and metal complexation. The complexes were characterized by X‐ray crystallography and found to possess a pseudotetrahedral geometry. Upon activation with methylaluminoxane, these nickel bisbenzimidazoles did not polymerize simple olefins (e.g., ethylene, propylene, and 1‐butene) but were found to carry out the rapid and efficient polymerization of norbornene. The polynorbornene products were characterized by gel permeation chromatography/light scattering, 13C NMR, and IR, and their Mark–Houwink and dn/dc parameters were determined. The molecular weights of the polynorbornenes were very high (weight‐average molecular weight = 587,000–797,000 g/mol). 13C NMR suggested that the polymerization occurred via vinyl addition (i.e., a 2,3‐linked polymer); no ring‐opened product was observed. Thermogravimetric analysis indicated that the polynorbornenes were stable up to 400 °C under nitrogen. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2095–2106, 2003  相似文献   

20.
A nonsymmetrical hybrid spacer PONNP pincer ligand is synthesized and fully characterized. The dearomatized PONNP* pincer nickel chloride reacts with silver triflate to generate a unique Ni–Ag bimetallic complex ( 5 ). Single‐crystal analysis shows a silver–silver distance of 2.693 Å, which is shorter than the typical metallic silver–silver bond length of 2.889 Å, suggesting an argentophilic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号