首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low‐temperature solution‐phase polycondensation of 1,1′‐ferrocenedicarboxylic acid chloride with newly synthesized aromatic diamines was carried out in tetrahydrofuran in the presence of triethylamine to form several new organometallic aromatic polyamides containing ferrocene units. The organometallic aromatic polyamides derived were in good yields ranging from 75 to 80%, amorphous with melting temperatures of > 350 °C. The monomers and the resulting polymers were characterized by their physical properties, elemental analysis, 1 H NMR and FTIR spectroscopy. The differential scanning calorimetry and thermogravimetric studies of the resulting aramids were also carried out. All the polymers were insoluble in common organic solvents. However, all dissolved in concentrated H2SO4 forming reddish brown solutions. Their glass transition temperatures were quite high, which is characteristic of aramids. They were also stable up to 450 °C with 10% mass losses (14–23%) recorded in the range 400–470 °C. The activation energies for decomposition of each aramid were also calculated using the Horowitz and Metzger method. All polymers showed reduced solution viscosities in concentrated sulphuric acid, which may be attributed to non‐Newtonian behavior. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
A comprehensive investigation on the synthesis and properties of a series of ferrocene‐containing (meth)acrylate monomers and their polymers that differ in the linkers between the ferrocene unit and the backbone was carried out. The side‐chain ferrocene‐containing polymers were prepared via atom transfer radical polymerization. The kinetic studies indicated that polymerization of most monomers followed a “controlled”/living manner. The polymerization rates were affected by the vinyl monomer structures and decreased with an increase of the linker length. Methacrylate polymerization was much faster than acrylate polymerization. The optical absorption of monomers and polymers was affected by the linkers. Thermal properties of these polymers can be tuned by controlling the length of the linker between the ferrocene unit and the backbone. By increasing the length of the linker, the glass transition temperature ranged from over 100 to ?20 °C. Electrochemical properties of both monomers and polymers were characterized. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Low‐temperature solution‐phase polycondensation of 1,1′‐ferrocenedicarboxylic acid chloride with different aromatic diamines was carried out in tetrahydrofuran in the presence of triethylamine to afford ferrocene‐containing aramids. The products were characterized by their solubilities, inherent viscosities, elemental analysis, FTIR spectroscopy, differential scanning calorimetry and thermogravimetry. All of them were insoluble in common solvents tested, except aramid‐IV (derived from 1,8‐naphthalene diamine), which was slightly soluble in N,N′‐dimethylacetamide, N,N′‐dimethylformamide, dimethylsulfoxide and formic acid. However, all were miscible with concentrated H2SO4, forming red‐coloured solutions. These all show a reduction in their solution viscosities at ambient conditions in concentrated H2SO4 which may be attributed to their non‐Newtonian behaviour. The glass transition temperature for each aramid was quite high, and stable up to 390 °C. The integral procedural decomposition temperatures for the products were calculated using Doyle's method and were found to be intermediate to that of Nylon 66 (419 °C) and Teflon (555 °C), and the activation energy for decomposition of each product was calculated by the Horowitz and Metzger method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Carbonyl hydrosilylation reaction was developed to prepare reactive blending between PBT and polymethylhydrosiloxane (PMHS). It focused on the addition reaction of Si–H groups from PMHS onto carbonyl groups from PBT catalyzed by triruthenium dodecacarbonyl (Ru3(CO)12). An approach on PBT model compounds was carried out and investigated by NMR spectroscopy to evidence the potentiality and efficiency of carbonyl hydrosilylation reaction. At temperatures up to 100 °C, the hydrosilylation reaction can reach 33 mol% conversion in a few hours. Side reactions were also highlighted. Such side reactions can reach more than 23 mol% of the final products when temperature increases to 180 °C. Then hydrosilylation reaction was extended to PBT modification with a molar ratio of ester group/SiH = 3.5 and viscosity ratio polysiloxane/PBT = 4.0 × 10?5. The reaction was carried out in an internal mixer at 220 °C and followed through the evolution of the torque of the reactional medium. Samples for different processing times were investigated by SEM and rheology. From these analyses, the dispersion of PMHS was promoted with diameters of few micrometers. The elastic behavior of final material was characteristic of solid or gel‐like structures, suggesting a network structure formation consistent with the gel fraction increase from 0 to 0.55. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1855–1868  相似文献   

5.
Abstract

A number of new condensation polymers with acetal units in the main chain and having linear and ladder-form structure and high thermal stability were synthesized by solution polycondensation of dihydroxyaromatic compounds with malonaldehydetetramethyl acetal as a reactive protected 1,3-dicarbonyl compound. Optimal conditions for polycondensation were obtained via study of the model compounds. In order to obtain high molecular weight polymers, general investigations on the influence of reaction conditions, such as monomer concentration and reaction temperature were carried out. All polymers were obtained in high yields and moderate inherent viscosity ranging from 0.25 to 0.41?dL/g. The proposed chemical structures of condensation polymers were confirmed by 1H-NMR, 13C-NMR, FTIR spectroscopies, TGA, and DSC. Thermal analysis indicated that these polymers are stable up to 360?°C, and a 10% weight loss (T10) were recorded on the TG curves in the temperature range of 381–411?°C in nitrogen atmosphere, indicating their good thermal stability.  相似文献   

6.
A series of functionalized 2‐bromoisobutyrates and 2‐chloro‐2‐phenylacetates led to α‐end‐functionalized poly(methyl methacrylate)s in Ru(II)‐catalyzed living radical polymerization; the terminal functions included amine, hydroxyl, and amide. These initiators were effective in the presence of additives such as Al(Oi‐Pr)3 and n‐Bu3N. The chlorophenylacetate initiators especially coupled with the amine additive gave polymers with well‐controlled molecular weights (Mw/Mn = 1.2–1.3) and high end functionality (Fn ~ 1.0). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1937–1944, 2002  相似文献   

7.
A series of 1,1′‐ferrocene‐containing polyelectrolytes ( 3, 4 ) were prepared when 1,1′‐bis(N,N‐dimethylaminomethyl)ferrocene ( 1a ) or 1, 1′‐bis{[1‐(2‐methyl)imidazol‐1‐yl]methyl}ferrocene ( 1b ) was quaternized with 1,4‐dibromobutane or α, α′‐dibromo‐p‐xylene. The counterion was bromide or bis(trifluoromethanesulfonyl)‐amide formed after metathesis with the lithium salt. Their chemical structures were determined by IR and NMR spectra. Molecular weights in the range of ~5400 ( 4a )– ~14,700 ( 4c ) for number‐average molecular weights (Mn) over narrow molecular weight distributions were determined for polymers 4 by gel permeation chromatography. Thermal properties of these materials were obtained by differential scanning calorimetry and thermogravimetric analysis that showed the polymers had thermal stabilities ranging between 172 and 330 °C. Liquid‐crystalline behavior was investigated on a hot stage polarizing optical microscope. Polymers 3a , 4b , and 4d formed either a high‐order or a low‐order smectic phase above their melting or fusion temperatures, and exhibited smectic‐to‐isotropic transitions. The ranges of the liquid‐crystalline phases for these materials were 22, 46, and >55 °C. Compounds 3b , 4a , and 4c are crystalline before melting or decomposing. All of the polymers exhibited absorption bands at ~430 nm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 974–983, 2005  相似文献   

8.
A novel synthetic method for soluble precursor polymers of poly(p‐phenylene vinylene) (PPV) derivatives by the palladium‐catalyzed three‐component coupling polycondensation of aromatic diiodides, aromatic bis(boronic acid) derivatives, and norbornadiene is described. For example, the polymerization of 1,4‐diiodo‐2,5‐dioctyloxybenzene, benzene‐1,4‐bis(boronic acid propanediol ester), and norbornadiene at 100 °C for 3 days provided a polymer consisting of the three monomer units in a 97% yield (number‐average molecular weight = 3100, weight‐average molecular weight/number‐average molecular weight = 1.37). A derivative of PPV was produced smoothly by the retro Diels–Alder reaction of the polymer both in a dodecyloxybenzene solution and in a film at 200 °C in vacuo. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3403–3410, 2005  相似文献   

9.
Ferrocene‐based polymers are characterized by their electrochemical activity, good redox properties, thermal, photochemical stability, and liquid crystallinity, and thus they have various applications in different fields. A comprehensive investigation on the synthesis and properties of three novel main‐chain ferrocene‐based polyesters with azobenzene in the side chain (MFPAS) was carried out. The main‐chain ferrocene‐based polyester, poly(N‐phenyldiethanolamine 1,1′‐ferrocene dicarboxylate (PPFD), was synthesized via the solution polycondensation reaction of 1,1′‐ferrocenedicarbonyl chloride with phenyldiethanolamine (PDE). The novel MFPAS were synthesized via the post‐polymerization azo‐coupling reaction of PPFD with three different 4‐substituted anilines including 4‐nitroaniline, 4‐aminobenzoic acid, and 4‐aminobenzonitrile to produce 4‐nitrophenylazo‐functionalized‐PPFD (PPFD‐NT), 4‐carboxyphenylazo‐functionalized‐PPFD (PPFD‐CA), and 4‐cyanophenylazo‐functionalized‐PPFD (PPFD‐CN), respectively. All the synthesized polymers were characterized by 1H NMR spectroscopy, Fourier transform infrared spectroscopy, and UV–visible spectroscopy. In addition, powder X‐ray diffraction patterns were measured for the synthesized polymers. The photoisomerization of the MFPAS was studied. The thermal properties of the MFPAS were studied using thermogravimetric analysis and differential scanning calorimetry. PPFD‐CA and PPFD‐CN were found to be more thermally stable than PPFD‐NT. Finally, the liquid‐crystalline properties of PPFD and the MFPAS were examined using polarized optical microscope. It was found that all the polymers possessed nematic phases and exhibited textures with schlieren disclinations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The synthesis of trimethoxysilane end‐capped linear polystyrene (PS) and star‐branched PS and subsequent silicon (Si) surface modification with linear and star polymers are described. Trimethoxysilane terminated PS was synthesized using sec‐butyl lithium initiated anionic polymerization of styrene and subsequent end‐capping of the living anions with p‐chloromethylphenyl trimethoxysilane (CMPTMS). 1H and 29Si NMR spectroscopy confirmed the successful end‐capping of polystyryllithium with the trimethoxysilane functional group. The effect of a molar excess of end‐capper on the efficiency of functionalization was also investigated, and the required excess increased for higher molar mass oligomers. Acid catalyzed hydrolysis and condensation of the trimethoxysilane end‐groups resulted in star‐branched PS, and NMR spectroscopy and SEC analysis were used to characterize the star polymers. This is the first report of core‐functionalized star‐shaped polymers as surface modifiers and the first comparative study showing differences in surface topography between star and linear polymer modified surfaces. Surface‐sensitive techniques such as ellipsometry, contact angle goniometry, and AFM were used to confirm the attachment of star PS, as well as to compare the characteristics of the star and linear PS modified Si surfaces. The polymer film properties were referenced to polymer dimensions in dilute solution, which revealed that linear PS chains were in the intermediate brush regime and the star‐branched PS produced a surface with covalently attached chains in the mushroom regime. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3655–3666, 2005  相似文献   

11.
The main objective of this work focused on the chemical modification of polyamide 12 (PA12) properties through the reaction with a hydride‐terminated polydimethylsiloxane (PDMS‐SiH). The investigated PA12/PDMS‐SiH blend was compatibilized by ruthenium derivative catalyzed hydrosilylation reaction in molten state. This original route enhanced interfacial adhesion and avoid PDMS‐SiH leaching phenomenon between the two immiscible phases. More specifically, the size of PDMS‐SiH domains in the blend decreased from around 4 μm to 800 nm and from 30 to 1 μm after compatibilization with 10 and 20 wt % PDMS‐SiH, respectively. For the best compatibilized PA12/PDMS‐SiH blend, the introduction of PDMS lowered the surface free energy and the PA12‐based blend turned from hydrophilic to hydrophobic behavior, as evidenced by the water contact angle measurements. Gas permeability and CO2/H2 and CO2/He gas selectivity were also improved with the increase in PDMS content. Besides, the mechanical properties were enhanced with 13% increase in Young's modulus after in situ compatibilization with 15 wt % PDMS‐SiH. Thermal stability was also improved after compatibilization as the initial degradation temperature of reactive blends obviously increased compared with nonreactive ones. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 978–988  相似文献   

12.
Organometallic polymers containing metallacycles in the main chain were prepared by the reactions of diynes with low-valent organometallic complexes such as CpCo(PPh3)2, CP2Ti(CH2=CHC2H5), and (iPrO)2Ti(CH2=CHCH3). Their polymer reactions involving the conversion of the main chain structures gave rise to polymers containing functional groups in their main chain repeating units. Design and synthesis of organometallic polymers that potentially serve as novel functional materials are also described.  相似文献   

13.
A novel ferrocene‐containing porous organic polymer (FPOP) has been prepared by Sonogashira‐Hagihara coupling reaction of 1,1′‐dibromoferrocene and tetrakis(4‐ethynylphenyl)silane. Compared with other polymers, the resulting polymer possesses excellent thermal stability with the decomposition temperature of 415°C and high porosity with Brunauer–Emmett–Teller (BET) surface area of 542 m2 g?1 as measured by nitrogen adsorption‐desoprtion isotherm at 77 K. For applications, it shows moderate carbon dioxide uptakes of up to 1.42 mmol g?1 (6.26 wt%) at 273 K/1.0 bar and 0.82 mmol g?1 (3.62 wt%) at 298 K/1.0 bar, and hydrogen capacity of up to 0.45 mmol g?1 (0.91 wt%) at 77 K/1.0 bar, indicating that FPOP might be utilized as a promising candidate for storing carbon dioxide and hydrogen. Although FPOP possesses lower porosity than many porous polymers, the gas capacities are higher or comparable to them, thereby revealing that the incorporation of ferrocene units into the network is an effective strategy to enhance the affinity between the framework and gas.  相似文献   

14.
A green and highly efficient iron‐catalyzed one‐pot oxidation/Knoevenagel tandem reaction for the synthesis of α, β‐unsaturated nitriles from secondary alcohols and malononitrile has been achieved. The reaction performed under mild conditions with air as an oxidant, and provided the corresponding oxidation/Knoevenagel prudocts in good to excellent yields within short times avoiding the use of noble metal catalysts and bases. Remarkably, water is the only byproduct in this methodology. The reaction could be performed on a gram scale under the standard reaction conditions.  相似文献   

15.
A number of classes of polynorbornenes containing cationic iron moieties within their side chains were prepared via ring‐opening metathesis polymerization with a ruthenium‐based catalyst. The iron‐containing polymers displayed excellent solubility in polar organic solvents. The weight‐average molecular weights of these polymeric materials were estimated to be in the range of 18,000–48,000. Thermogravimetric analysis of these polymers showed two distinct weight losses. The first weight loss was in the range of 204–260 °C and was due to the loss of the metallic moieties, whereas the second weight loss was observed at 368–512 °C and was due to the degradation of the polymer backbone. Cyclic voltammetry studies of the iron‐containing polymers showed that the 18 e? cationic iron centers underwent a reduction to give the neutral 19 e? complexes at half‐wave potential (E1/2) = ?1.105 V. Photolysis of the metallated polymers led to the isolation of the norbornene polymers in very good yields. Differential scanning calorimetry studies showed a sharp increase in the glass‐transition temperatures up to 91 °C when rigid aromatic side chains were incorporated into the norbornene polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3053–3070, 2006  相似文献   

16.
Polymer‐derived methods are one of the most important tools for the synthesis of ceramics with a finely dispersed microstructure. In this study, a soluble and meltable ZrC/C pre‐ceramic polymer, P‐DACZ, (which would later exhibit a high ceramic yield of 71 wt%) was synthesized via radical polymerization. By adding low molecular weight polycarbosilane in any proportion during the radical polymerization process of P‐DACZ, a soluble and meltable ZrC/SiC/C pre‐ceramic precursor, PCS‐DACZ (which would later exhibit a high ceramic yield of >80 wt%) was synthesized. After annealing at 1400 °C under an argon flow, the precursors converted into bulk ZrC/C and ZrC/SiC/C ceramic nanocomposites. The ZrC nanoparticles could resist any grain growth when heat‐treated at temperatures above 1800 °C because the C or SiC matrix prevented long‐range atomic diffusion of zirconium. Such ceramic nanocomposites would be suitable for structural and (multi)functional applications at harsh environments with high temperatures.  相似文献   

17.
The reaction of 2,5‐diiodo‐1,4‐benzenedicarbonyl chloride, C6H2I2(COCl)2p, with 4‐hydroxy‐2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO‐ol) gave I–Ph(COO–TEMPO)2–I, Monomer‐1. Pd‐catalyzed polycondensation of Monomer‐1 with Me3Sn‐Th‐SnMe3 (2,5‐bis(trimethylstannyl)thiophene) and Bu3Sn–CH = CH–SnBu3 (1,2‐bis‐(tributylstannyl)ethylene) gave the corresponding π‐conjugated polymers, Polymer‐1 and Polymer‐2, respectively. Monomer‐1 was converted to a diethynyl compound, H–C ≡ C–Ph(COO–TEMPO)2–C ≡ C–H (Monomer‐1'), and Pd‐catalyzed polycondensation between Monomer‐1 and Monomer‐1' gave a π‐conjugated poly(arylene ethynylene) type polymer, Polymer‐3. According to the expansion of the π‐conjugation system by the polymerization, the UV–vis peaks of Monomer‐1 (λmax = 323 nm) and Monomer‐1' (327 nm) are shifted to longer wavelengths (λmax = 365 nm, 385 nm, and 396 nm for Polymer‐1, Polymer‐2, and Polymer‐3, respectively). Polymer‐1–Polymer‐3 showed ESR signals at about g = 2.01 with reasonable intensities. They are electrochemically active and showed a peak current anodic (oxidation) peak at about 0.9 V versus Ag/AgCl, which is reasonable for TEMPO polymers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Imines are observed frequently in ruthenium‐catalyzed N‐alkylation of amines with alcohols. Herein, nitrogen–phosphine functionalized carbene ligands were developed and used in ruthenium‐catalyzed N‐alkylation to explore the mechanism of imine formation. The results showed that strongly electron‐donating ligands were beneficial for imine formation and alcohol dehydrogenation to generate acid. In addition, with an increase of electron density of nitrogen atom in substituted amines, the yield of imines in N‐alkylation was improved. At the same time, with electron‐rich imines as substrates, the transfer hydrogenation of imines became difficult. It is suggested that strongly electron‐donating ligands and substrates caused an increase of electron density on the ruthenium center, which resulted in the elimination of hydrogen atoms in active species [LRuH2] as hydrogen gas rather than transfer onto the imine coordinated with the ruthenium center.  相似文献   

19.
We synthesized a novel photoresponsive monomer, silicon‐containing azo monomer with paired mesogens in the side chain, by reacting 3‐methacryloxypropylmethyldichlorosilane with 2‐[2‐(4‐cyano‐azobenzene‐4′‐oxy)ethylene‐oxy]ethyl alcohol, a mesogenic group. Corresponding homopolymer and copolymers with methyl methacrylate were generated via radical polymerization with AIBN as a radical initiator. Investigations of their thermal properties and optical textures confirmed the monomer and the homopolymer have smectic structures. Homo‐ and copolymer films showed high potential as reversible data recording media via photoinduced alignment of azobenzene groups with irradiation of a linearly or circularly polarized light. Out of all the samples, the copolymer films with high azo dye contents showed the best resolution in the recorded data as well as the fastest response to a pump beam due to large optical birefringence induced in a write‐in process. Strong dependence of the stability of the data stored in the films on the glass transition temperature of the polymers was also observed. In addition, high‐quality holographic grating patterns were inscribed even on the copolymer film with azo molar content of only 7.0% using a modified two‐wave mixing technique. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6734–6745, 2008  相似文献   

20.
Palladium‐catalyzed direct arylation polycondensation afforded a bithiazole‐based homopolymer and donor–acceptor (D–A)‐type copolymers where the bithiazole unit served as an acceptor unit. The results of polymerization strongly depended on the solubility of the polymers; long alkyl chain substituents were required for the formation of high‐molecular‐weight polymers in high yields owing to low solubility of the bithiazole‐based polymers. X‐ray diffraction studies revealed that the obtained polymers were highly crystalline. In particular, a well‐ordered lamellar structure was observed in the D–A‐type copolymer with flexible alkyl chains after thermal annealing, presumably owing to the combination of interchain interactions between the bithiazole units and the electrostatic D–A interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1396–1402  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号