首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
ABSTRACT. The excessive and unsustainable exploitation of our marine resources has led to the promotion of marine reserves as a fisheries management tool. Marine reserves, areas in which fishing is restricted or prohibited, can offer opportunities for the recovery of exploited stock and fishery enhancement. In this paper we examine the contribution of fully protected tropical marine reserves to fishery enhancement by modeling marine reserve‐fishery linkages. The consequences of reserve establishment on the long‐run equilibrium fish biomass and fishery catch levels are evaluated. In contrast to earlier models this study highlights the roles of both adult (and juvenile) fish migration and larval dispersal between the reserve and fishing grounds by employing a spawner‐recruit model. Uniform larval dispersal, uniform larval retention and complete larval retention combined with zero, moderate and high fish migration scenarios are analyzed in turn. The numerical simulations are based on Mombasa Marine National Park, Kenya, a fully protected coral reef marine reserve comprising approximately 30% of former fishing grounds. Simulation results suggest that the establishment of a fully protected marine reserve will always lead to an increase in total fish biomass. If the fishery is moderately to heavily exploited, total fishery catch will be greater with the reserve in all scenarios of fish and larval movement. If the fishery faces low levels of exploitation, catches can be optimized without a reserve but with controlled fishing effort. With high fish migration from the reserve, catches are optimized with the reserve. The optimal area of the marine reserve depends on the exploitation rate in the neighboring fishing grounds. For example, if exploitation is maintained at 40%, the ‘optimal’ reserve size would be 10%. If the rate increases to 50%, then the reserve needs to be 30% of the management area in order to maximize catches. However, even in lower exploitation fisheries (below 40%), a small reserve (up to 20%) provides significantly higher gains in fish biomass than losses in catch. Marine reserves are a valuable fisheries management tool. To achieve maximum fishery benefits they should be complemented by fishing effort controls.  相似文献   

2.
ABSTRACT. Given a paucity of empirical data, policymakers are forced to rely on modeling to assess potential impacts of creating marine reserves to manage fisheries. Many modeling studies of reserves conclude that fishing yield will increase (or decrease only modestly) after creating a reserve in a heavily exploited fishery. However, much of the marine reserves modeling ignores the spatial heterogeneity of fishing behavior. Contrary to empirical findings in fisheries science and economics, most models assume explicitly or implicitly that fishing effort is distributed uniformly over space. This paper demonstrates that by ignoring this heterogeneity, yield‐per‐recruit models systematically overstate the yield gains (or understate the losses) from creating a reserve in a heavily exploited fishery. Conversely, at very low levels of exploitation, models that ignore heterogeneous fishing effort overstate the fishing yield losses from creating a reserve. Starting with a standard yield‐per‐recruit model, the paper derives a yield surface that maps spatially differentiated fishing effort into total long‐run fishing yield. It is the curvature of this surface that accounts for why the spatial distribution of fishing effort so greatly affects predicted changes from forming a reserve. The results apply generally to any model in which the long‐run fishing yield has similar curvature to a two‐patch Beverton‐Holt model. A simulation of marine reserve formation in the California red sea urchin fishery with Beverton‐Holt recruitment, eleven patches, and common larval pool dispersal dynamics reinforces these results.  相似文献   

3.
4.
Abstract Despite a number of benefits, marine reserves provide neither incentives for fishermen to protect biodiversity nor compensation for financial loss due to the designation of the reserves. To obtain fishermen's support for marine reserves, some politicians have suggested that managers of new marine reserves should consider subsidizing or compensating those fishermen affected by the new operations. The objective of this paper is to apply principal–agent theory, which is still infrequently applied to fisheries, to define the optimal reserve area, fishing effort, and transfer payments in the context of symmetric and asymmetric information between managers and fishermen. The expected optimal reserve size under asymmetric information is smaller than that under symmetric information. Fishing efforts encouraged with a transfer payment are always less compared to those without payment. This reflects the fact that as the manager induces the fishermen to participate in the conservation program, the fishermen will take into account their effects on fish stock by decreasing their effort. Examples are also supplied to demonstrate these concepts.  相似文献   

5.
ABSTRACT. We utilize a spatial bioeconomic model to investigate the impacts of creating reserves on limited‐entry fisheries. We find that reserve creation can produce win‐win situations where aggregate biomass and the common license (lease) price increase. These situations arise in biological systems where dispersal processes are prevalent and the fishery prior to reserve creation is operating at effort levels in a neighborhood of open‐access levels. We also illustrate that using strictly biological criteria for siting reserves (e.g., setting aside the most biological productive areas) will likely induce the most vociferous objections from the fishing industry. In general, we find that the dispersal rate and the degree the patches are connected play a significant role on the net impacts on the fishing sector.  相似文献   

6.
Inappropriate development and overexploitation have seriously degraded aquatic resources in China. Stakeholders identified three fish stock enhancement and biodiversity conservation scenarios for the Beijiang River: S1, increased fish restocking; S2, no fishing season and habitat conservation; and S3, strict pollution control. Potential impacts of these actions on the livelihoods of fishers were evaluated using applied economic modeling. Baseline costs and benefits came from logbooks from 30 fishers and a survey of 90 households in three villages. The financial net benefit for a household was US$1583 (¥11,160) annually, representing a 142% and 387% return on capital and operating costs, respectively. Larger catches associated with S1 and S2 generated a net benefit of US$1651 and US$1822, respectively. Strict pollution control resulting in higher catches (+20%) and lower operating costs (?20%) would increase the net benefit by 15.9% to US$1835 annually. Pollution control would benefit other resource users and is a prerequisite for ecological restoration. Recommendations for Resource Managers
  • Stringent pollution control measures are essential to conserve aquatic biodiversity and enhance the livelihoods of fishers but will require considerable public and private sector investment.
  • Enhanced fish stocks in the Beijiang River could benefit poor livelihoods but may not be sufficient to lift households out of poverty, aged fishers require government assistance to diversify their livelihoods, access alternative urban employment, and survive with dignity.
  • Adopting the economic modeling approach presented here could enable responsible authorities to simultaneously evaluate fish stock enhancement and biodiversity conservation options.
  • Broader application of the approach presented here could help ensure small‐scale inland fisheries are managed sustainably and aquatic ecosystems are restored and protected by 2020, in line with Target 6 of the United Nations’ Convention on Biological Diversity Strategic Plan for Biodiversity.
  相似文献   

7.
Abstract Marine protected areas (MPAs) are gaining momentum as tools within fisheries management. Although many studies have been conducted to their use and potential, only few authors have considered their use in the High Seas. In this paper, we investigate the effects of fish growth enhancing MPAs on the formation of regional fisheries management organisations (RFMOs) for highly migratory fish stocks. We argue that in absence of enforcement MPAs constitute a weakest‐link public good, which can only be realized if everyone agrees. We combine this notion with a game theoretic model of RFMO formation to derive potentially stable RFMOs with and without MPAs. We find that MPAs generally increase the parameter range over which RFMOs are stable, and that they increase stability in a number of cases as compared to the case without MPAs. They do not necessarily induce a fully cooperative solution among all fishing nations. In summary, results of this paper suggest a positive role for MPAs in the High Seas.  相似文献   

8.
ABSTRACT. Limiting adverse consequences of fishing on essential fish habitat has emerged as a key fishery management objective. The conventional approach to providing habitat protection is to create MPAs or marine reserves that prohibit all or certain types of fishing in specific areas. However, there may be more cost‐effective and flexible ways to provide habitat protection. We propose an individual habitat quota (IHQ) system for habitat conservation that would utilize economic incentives to achieve habitat conservation goals cost‐effectively. Individual quotas of habitat impact units (HIU) would be distributed to fishers with an aggregate quota set to maintain a target habitat “stock.” HIU use would be based on a proxy for marginal habitat damage. We use a dynamic, explicitly spatial fishery and habitat simulation model to explore how such a system might work. We examine how outcomes are affected by spatial heterogeneity in the fishery and the scale of habitat regulation. We find that the IHQ system is a highly cost‐effective means of ensuring a given level of habitat protection, but that spatial heterogeneity and the scale of regulation can have significant effects on the distribution of habitat protection.  相似文献   

9.
Considering that over exploitation would result in the extinction of the population, we propose and investigate a Holling II functional response prey-predator model with harvesting for fishery resource in a two-patch environment: a free fishing zone (patch 1) and a reserve zone (patch 2) where fishing is strictly prohibited. First, the presence of harvesting can impact the existence of equilibria. Further, stability criteria of the model is analyzed both from local and global point of view. Our results indicate that so long as the prey population in the reserved zone does not extinct, the both prey always exist, that is marine reserves should ensure the sustainability of system. Thus, marine reserves not only protect species inside the reserve area but they can also increase fish abundance in adjacent areas. Next, the existence of bionomic equilibrium and the optimal harvesting policy are discussed. The present value of revenues is maximized by using Pontryagin’s maximum principle. It is established that an infinite discount rate leads to complete dissipation of economic rent. Finally, some numerical simulations are given to illustrate our results.  相似文献   

10.
ABSTRACT. In this paper, we examine a game theoretic setting in which four countries have established a regional organization for the conservation and management of straddling and highly migratory fish stocks as recommended by the United Nations Agreement. These countries consist of two coastal states and two distant water fishing nations (DWFNs). A characteristic function game approach is applied to describe the sharing of the surplus benefits from cooperation. We are specifically interested in the effect of possible coalition restrictions on these shares. According to our results the distant water fishing nations, by individually refusing to join with the coastal states, can considerably improve their negotiation position if their harvesting costs are relatively high and similar. The results show that the DWFNs may have economic reasons for negotiating as a group against coastal states. However, if the coastal states are clearly more efficient than the DWFNs then coalition restrictions may be prevented by coastal states.  相似文献   

11.
The Agreement, arising from the recently concluded U.N. Conference on Straddling Fish Stocks and Highly Migratory Fish Stocks, calls for the management of these transboundary resources to be undertaken through regional fisheries management organizations. This paper represents a first attempt to analyze the optimal economic management of straddling/highly migratory stocks under the to-be-established regional organizations. Dynamic game theory, commonly used in analyzing the management of “shared” fishery resources, is brought to bear. An obvious question to be raised is whether the analysis applied to “shared” fish stocks management is sufficient for the purpose of examining the management of straddling/highly migratory fish stocks. The analysis is not sufficient for the purpose of examining the cooperative management of straddling/highly migratory fish stocks, because, in contrast to “shared” fish stock management, there is no guarantee that the number and nature of joint exploiters of the resource, in the aforementioned regional organization, will be constant through time. It is the existence of what is termed the “New Member Problem” which most clearly distinguishes the management of straddling/highly migratory fish stocks from the management of “shared” fish stocks. The paper discusses several approaches to addressing the “New Member Problem.”  相似文献   

12.
Abstract Fisheries managers normally make decisions based on stock abundance estimates subject to process, observation, and model uncertainties. Considerable effort is invested in gathering information about stock size to decrease these uncertainties. However, few studies have evaluated benefits from collecting such information in terms of yield and stability of annual harvest. Here, we develop a strategic age‐structured population model for a long‐lived fish with stochastic recruitment, resembling the Norwegian spring‐spawning herring (NSSH, Clupea harengus L.). We evaluate how uncertainties in population estimates influence annual yield, spawning stock biomass (SSB), and variation in annual harvest, using both the proportional threshold harvesting (PTH) and the current harvest control rule for NSSH as harvest strategies. Results show that the consequences of a biased estimate are sensitive to the harvest strategy employed. If the harvest strategy is suitably chosen, the benefits of accurate information are low, and less information about the stock is necessary to maintain high average yield. Reduced harvest intensity effectively removes the need for accurate stock estimates. PTH (a variant of the constant escapement strategy) with low harvest ratio and the current NSSH harvest control rule both provide remarkable stability in yield and SSB. However, decreased uncertainty will often decrease year‐to‐year variation in harvest and the frequency of fishing moratoria.  相似文献   

13.
Research and management actions are reviewed with respect to demersal fisheries of the Mediterranean since the Second World War, as reflected in the activities of the General Fisheries Council for the Mediterranean, (GFCM). The scientific background to the priority concern expressed for minimum size limits in the 1960's and 1970's is discussed, and in particular, the mesh selectivity experiments that formed the basis for yield per recruit calculations, with respect to the trawl fishery. More recent considerations, changing our perception of the appropriateness of size at first capture of demersal fish as a management tool in trawl fisheries, are reviewed. It is concluded that for multispecies fisheries where the first priority for fishing effort control is not respected, size limits based on size at maturity, rather than yield per recruit criteria, are more feasible, but that changes in mesh size need to take into account subsequent changes in equity between inshore and offshore fleets, and changes in species composition and areas of distribution during the life history. They also need to consider the high landed value of small fish in many Mediterranean fisheries. Alternative, or supplementary, measures to mesh size regulation that affect capture of small fish are also reviewed, including seasonal closures, closed areas, bans on trawling inshore, and regulations on minimum size at sale. A range of problems to be considered prior to deciding on an increase in mesh size are reviewed, including changes in total effort exerted, changes in increases in fishing power (and especially the impacts on the spawning stock), changes in discard rate, “meshing” of small fish, and indirect mortality during fishing. A strategy for introducing new mesh sizes is suggested, with emphasis, where possible, on the experimental approach, and on supplementary measures to control fishing effort. The paper concludes by considering an alternative paradigm to minimum size regulation for demersal fisheries management; namely, the exploitation of juvenile fish, with provision for escapement of a small proportion of large, mature fish offshore, for which exploitation rate declines and remains low. It is suggested that this strategy may be, de facto, the one prevailing in the small mesh size inshore trawl fishery prior to development of offshore fisheries. The implications of this possibility have to be considered seriously if high effort levels are to be maintained while effective size limits are raised.  相似文献   

14.
We consider a hunting area and a wildlife reserve and answer the question: How does clever migration decision affect the social optimal and the private optimal hunting levels and population stocks? We analyze this in a model allowing for two‐way migration between hunting and reserve areas, where the populations’ migration decisions depend on both hunting pressure and relative population densities. In the social optimum a pure stress effect on the behavior of smart wildlife exists. This implies that the population level in the wildlife reserve tends to increase and the population level in the hunting area and hunting levels tend to decrease. On the other hand, the effect on stock tends to reduce the population in the wildlife reserve and increase the population in the hunting area and thereby also increase hunting. In the case of the private optimum, open‐access is assumed and we find that the same qualitative results arise when comparing a situation with and without stress effects, but of course at a higher level of hunting. We also show that when net social benefits of hunting dominate the net social benefits of populations, wildlife reserves are optimally placed in areas of low carrying capacity and vice versa.  相似文献   

15.
Abstract Marine protected areas (MPAs), used increasingly as a tool for conservation of ocean and coastal environments, typically interact with fisheries. Indeed, implementation of an MPA in a coastal region will likely affect fishing communities along that coast but to differing degrees depending on their location relative to the MPA. The resulting creation of “winners” and “losers” has implications for the acceptance and long‐term viability of the MPA. This paper develops a spatially explicit bioeconomic simulation model to assess the distributional implications resulting from creation of a no‐take MPA. The key assumption is that this results in certain fishers being displaced from the MPA to new fishing locations, leading to decreased fishing time and increased costs. Is it possible for those being displaced to end up as “winners” in the fishery? Analysis of the model indicates that such an outcome can occur in certain circumstances, notably if the biological effects of the MPA produce (i) improved ecosystem health inside the MPA, such that fish stock carrying capacity increases; or (ii) to some extent, high fish stock migration rates between neighboring areas. The results indicate that in creating MPAs, careful attention to their design is needed in order to deal with corresponding distributional impacts on fishing communities.  相似文献   

16.
In the current paper we examine a game-theoretic setting in which three countries have established a regional organization for the conservation and management of straddling and highly migratory fish stocks. A characteristic function game approach is applied to describe the sharing of the surplus benefits from cooperation. We demonstrate that the nucleolus and the Shapley value give more of the benefits to the coalition with substantial bargaining power than does the Nash bargaining scheme. We also compare the results that are obtained by using the nucleolus and the Shapley value as solution concepts. The outcomes from these solution concepts depend on the relative efficiency of the most efficient coalition. Furthermore, the question of fair sharing of the benefits is considered in the context of straddling stocks.  相似文献   

17.
Abstract In the case of small pelagic fish, it seems reasonable to consider harvest functions depending nonlinearly on fishing effort and fish stock. Indeed, empirical evidence about these fish species suggests that marginal catch does not necessarily react in a linear way neither to changes in fishing effort nor in fish stock levels. This is in contradiction with traditional fishery economic models where catch‐to‐input marginal productivities are normally assumed to be constant. While allowing for nonlinearities in both catch‐to‐effort and catch‐to‐stock parameters, this paper extends the traditional single‐stock harvesting economic model by focusing on the dependence of the stationary solutions upon the nonlinear catch‐to‐stock parameter. Thus, we analyze equilibrium responses to changes in this parameter, which in turn may be triggered either by climatic or technological change. Given the focus in this study on the case of small pelagic fish, the analysis considers positive but small values for the catch‐to‐stock parameter.  相似文献   

18.
Abstract Population features inferred from single‐species, age‐structured models are compared to those inferred from a multispecies, age‐structured model that includes predator‐prey interactions among three commercially harvested fish species—walleye pollock, Atka mackerel, and Pacific cod—on the Aleutian Shelf, Alaska. The multispecies framework treats the single‐species models and data as a special case of the multispecies model and data. The same data from fisheries and surveys are used to estimate model parameters for both single‐species and multispecies configurations of the model. Additionally, data from stomach samples and predator rations are used to estimate the parameters of the multispecies model. One form of the feeding functional response, predator pre‐emption, was selected using AIC from seven alternative models for how the predation rate changes with the densities of prey and possibly other predators. Differences in estimated population dynamics and productivity between the multispecies and single‐species models were observed. The multispecies model estimated lower mackerel population sizes from 1964–2003 than the single‐species model, while the spawning biomass of pollock was estimated to have declined more than three times faster since 1964 by the multispecies model. The variances around the estimates of spawning biomass were smaller for mackerel and larger for pollock in the multispecies model compared to the single‐species model.  相似文献   

19.
Ecosystem externalities arise when one use of an ecosystem affects its other uses through the production functions of the ecosystem. We use simulations with a size‐spectrum ecosystem model to investigate the ecosystem externality created by fishing of multiple species. The model is based upon general ecological principles and is calibrated to the North Sea. Two fleets are considered: a “forage fish” fleet targeting species that mature at small sizes and a “large fish” fleet targeting large piscivorous species. Based on the marginal analysis of the present value of the rent, we develop a benefit indicator that explicitly divides the consequences of fishing into internal and external benefits. This analysis demonstrates that the forage fish fleet has a notable economic impact on the large fish fleet, but the reverse is not true. The impact can be either negative or positive, which entails that for optimal economic exploitation, the forage fishery has to be adjusted according to the large fish fishery. With the present large fish fishery in the North Sea, the two fisheries are well adjusted; however, the present combined exploitation level is too high to achieve optimal economic rents.  相似文献   

20.
YEAR AROUND CLOSED AREAS AS A MANAGEMENT TOOL   总被引:1,自引:0,他引:1  
Year around closed areas or refuges as management mechanisms for controlling fishing mortality are explored using a two-component, spatial model with movement between areas. The model assesses the fate of a cohort when only a portion of it is vulnerable to fishing. The yield per recruit and spawning stock biomass per recruit are compared for equivalent amounts of fishing effort with and without a refuge. The results indicate that the institution of a closed area can lead to substantial increases in spawning stock biomass realized from a cohort and, as such, could be a viable short-term management option to reduce overall fishing mortality on an overexploited stock. Yield per recruit with a refuge is a complex function of the size of the refuge, fishing mortality rates and movement rates. The results suggest that the proportional loss in yield per recruit will be less than the initial proportion of the cohort contained within the refuge. In some instances, the yield per recruit with a refuge can exceed the yield per recruit without one, but the net increases are usually small. The size of the refuge needed to achieve a specified gain in spawning biomass depends upon the mobility of the fish. Higher movement rates require a larger refuge to achieve the same increase, but any loss in yield per recruit will be less even though the refuge is larger. The assumptions underlying the model are discussed, and the importance of information on movement rates for assessing the possible effect of closed areas is stressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号