首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have studied structural and magnetic properties in small iron oxide clusters, FenOm (n = 1-5), by means of the first-principles calculation based on the density functional theory. We have used not only the usual spin polarized scheme, but also the scheme for noncollinear magnetism to carry out efficient optimization in magnetic structure. The result of FeOm (m = 1-4) is in good agreement with the previous work. We found the stable adduct clusters in FeO5 and FeO6. The bridge site of oxygen atom is more favorable in energy than any other site for the clusters of FenO (n = 2-5). As increasing the number of oxygen atoms, the alignment of Fe magnetic moments changes from ferromagnetic configuration to antiferromagnetic one at FenOn (n = 2-4). Received 10 September 2002 Published online 3 July 2003  相似文献   

2.
Atomic structures and non-collinear magnetic moments are calculated by the first principle molecular dynamics for Fe5 and Fe6 linear chains with several fixed and free chain-lengths. The dimerization appears in the optimized atomic structures of all the chains. For the Fe5, the magnetic arrangement is parallel for a large chain-length and changes to non-collinear with decreasing the chain-length. For the Fe6, the magnetic arrangement is antiparallel in a unit of dimer for a small chain-length and changes to non-collinear with increasing the chain-length. These magnetic behaviors are simulated by a simple J1-J2 Heisenberg model.  相似文献   

3.
We present results of magnetic torque calculations using the fully relativistic spin-polarized Korringa-Kohn-Rostoker approach applied to small Co and Fe clusters deposited on the Pt(111) surface. From the magnetic torque one can derive amongst others the magnetic anisotropy energy (MAE). It was found that this approach is numerically much more stable and also computationally less demanding than using the magnetic force theorem that allows to calculate the MAE directly. Although structural relaxation effects were not included our results correspond reasonably well to recent experimental data.  相似文献   

4.
The transport properties of finite length double-walled carbon nanotubes subject to the influences of a transverse electric field and a magnetic field with varying polar angles are investigated theoretically. The electrical conductance, thermal conductance and Peltier coefficient dependences on the external fields and symmetric configuration are studied in linear response regime. Prominent peak structures of the electrical conductance are predicted when varying the electric field strength. The features of the conductance peaks are found to be strongly dependent on the external fields and the intertube interactions. The heights of the electrical and thermal conductance peaks display the quantized behavior, while those of the Peltier coefficient do not. The conductance peaks are found to be broadened by the finite temperature.  相似文献   

5.
The binding energies and sizes of excitons, and energy splitting of the bright-dark excitons in single-walled carbon nanotubes have been calculated using the nonorthogonal tight-binding model, supplemented by the long-range Coulomb interaction. It is found that the binding energies and the sizes of excitons not only depend on tube's diameter d, but also its chirality. However, the splitting of the bright-dark excitons mostly depends on 1/d2. Our obtained results show that the curvature effect is very important for the exciton excitations in the SWNTs, especially in the smaller diameter ones.  相似文献   

6.
We report the recent findings of metal (M) encapsulated clusters of silicon from computer experiments based on ab initio total energy calculations and a cage shrinkage and atom removal approach. Our results show that using a guest atom, it is possible to wrap silicon in fullerenelike (f) structures, as sp2 bonding is not favorable to produce empty cages unlike for carbon. Transition M atoms have a strong bonding with the silicon cage that are responsible for the compact structures. The size and structure of the cage change from 14 to 20 Si atoms depending upon the size and valence of the M atom. Fewer Si atoms lead to relatively open structures. We find cubic, f, Frank-Kasper (FK) polyheral type, decahedral, icosahedral and hexagonal structures for M@Sin with n = 12-16 and several different M atoms. The magic behavior of 15 and 16 atom Si cages is in agreement with experiments. The FK polyhedral cluster, M@Si16 has an exceptionally large density functional gap of about 2.35 eV calculated within the generalized gradient approximation. It is likely to give rise to visible luminescence in these clusters. The cluster-cluster interaction is weak that makes such clusters attractive for cluster assembled materials. Further studies to stabilize Si20 cage with M = Zr, Ba, Sr, and Pb show that in all cases there is a distortion of the f cage. Similar studies on M encapsulated germanium clusters show FK polyhedral and decahedral isomers to be more favorable. Also perfect icosahedral M@Ge12 and M@Sn12 clusters have been obtained with large gaps by doping with divalent M atoms. Recent results of the H interaction with these clusters, hydrogenated silicon fullerenes as well as assemblies of clusters such as nanowires and nanotubes are briefly presented.  相似文献   

7.
Mass-filtered cobalt clusters with a size of 8 nm have been deposited in-situ under soft-landing conditions onto Au(111). The spin and orbital moments of the Co nanoparticles on a Au (111) single crystal have been investigated as a function of the temperature using the element-specific method of X-ray magnetic circular dichroism in photoabsorption. The results hint at an temperature-dependent spin-reorientation transition which is discussed with respect to different contribution to the magnetic anisotropy. Furthermore, by means of an in-situ oxidation experiment, the influence of an exposure to oxygen on the properties of the cobalt clusters has been investigated.  相似文献   

8.
The ac Stark effect is investigated in the toroidal carbon nanotube system threaded with an ac magnetic flux. The Floquet theory is employed to deal with the time-dependent quantum problems. The time-averaged energy of the system is derived and is found to exhibit a strong relationship with an external field, and the modified energy gap has been presented. The ac flux enhances energy gaps to cause metal-semiconductor transition. The steady current has been obtained by employing the free energy approach, and the persistent current is a special case as the magnitude of the ac flux approaches zero. The photon-assisted current is quite different from the persistent current due to the absorption and emission of photons. The local density of states is obtained by calculating the Green's function in the Floquet state, and photon-resonant structures are observed. All of the novel features are associated with the ac Stark effect, which is caused by the modification of energy levels. Received 20 November 2002 / Received in final form 7 February 2003 Published online 20 June 2003 RID="a" ID="a"e-mail: zhaohonk@yahoo.com  相似文献   

9.
Fullerene-like silicon nanostructures with twenty and twenty-four carbon atoms on the surface of the Si60 cage by substitution, as well as inside the cage at various orientations have been studied within the generalized gradient approximation to density functional theory. Full geometry optimizations have been performed without any symmetry constraints using the Gaussian 03 suite of programs and the LANL2DZ basis set. Thus, for the silicon atom, the Hay-Wadt pseudopotential with the associated basis set is used for the core electrons and the valence electrons, respectively. For the carbon atom, the Dunning/Huzinaga double zeta basis set is employed. Electronic and geometric properties of these nanostructures are presented and discussed in detail. Optimized silicon-carbon fullerene like nanostructures are found to have increased stability compared to the bare Si60 cage and the stability depends on the number and the orientation of carbon atoms, as well as on the nature of silicon-carbon and carbon-carbon bonding.  相似文献   

10.
We have carried out optical and X-ray photoemission studies of the dendrimer-encapsulated Au nanoclusters. The dendrimer-encapsulated Au nanoclusters are prepared by the chemical reduction of Au ions loaded within the dendrimer templates. Photoluminescence spectrum of the dendrimer-encapsulated Au nanoclusters with diameter of about 1.0 nm shows the visible luminescence centered at about 2.8 eV. In addition, we have measured the nanocluster-size dependent photoemission spectra in the valence-band region. From line shape analysis of Au 4f X-ray photoemission spectra, Au 4f core-level spectra of the dendrimer-encapsulated Au nanoclusters reflect the size dependent chemical-states. From these results, we discuss electronic structures and chemical states of the dendrimer-encapsulated Au nanoclusters.  相似文献   

11.
We investigate the electronic instabilities of the small-diameter (3, 3) carbon nanotubes by studying the low-energy perturbations of the normal Luttinger liquid regime. The bosonization approach is adopted to deal exactly with the interactions in the forward-scattering channels, while renormalization group methods are used to analyze the low-energy instabilities. In this respect, we take into account the competition between the effective e–e interaction mediated by phonons and the Coulomb interaction in backscattering and Umklapp channels. Moreover, we apply our analysis to relevant experimental conditions where the nanotubes are assembled into large three-dimensional arrays, which leads to an efficient screening of the Coulomb potential at small momentum-transfer. We find that the destabilization of the normal metallic behavior takes place through the onset of critical behavior in some of the two charge stiffnesses that characterize the Luttinger liquid state. From a physical point of view, this results in either a divergent compressibility or a vanishing renormalized velocity for current excitations at the point of the transition. We observe anyhow that this kind of critical behavior occurs without the development of any appreciable sign of superconducting correlations.  相似文献   

12.
Biferrocene-modified gold nanoparticles (Aun-BFc) comprising 1.7, 2.2 and 2.9 nm in average core diameter, d, were synthesized by a substitution reaction of octyl thiolate-covered nanoparticles with biferrocene-terminated alkanethiol, 1-(9-thiononyl-1-one)-1, 1-biferrocene (BFcS). All sizes of Aun-BFc undergo two-step oxidation reactions in 0.1 mol dm-3 Bu4NClO4-CH2Cl2 and consecutive potential scans including the second oxidation process lead to the formation of an adhesive redox-active gold nanoparticle film on an electrode. The thickness of the Aun-BFc film is controllable by the number of potential scans. The scanning tunneling microscope images reveal that the Aun-BFc (d = 2.9 nm) film forms many domains of the assembled Aun-BFcs, especially the particles are isotropically assembled in line.  相似文献   

13.
The low-energy electronic structure of icosahedral fullerenes is studied within the field-theory model. In the field model, the pentagonal rings in the fullerene are simulated by two kinds of gauge fields. The first one, non-abelian field, follows from so-called K spin rotation invariance for the spinor field while the second one describes the elastic flow due to pentagonal apical disclinations. For fullerene molecule, these fluxes are taken into account by introducing an effective field due to magnetic monopole placed at the center of a sphere. Additionally, the spherical geometry of the fullerene is incorporated via the spin connection term. The exact analytical solution of the problem (both for the eigenfunctions and the energy spectrum) is found.  相似文献   

14.
Fe clusters of 105±2 atoms/cluster were mass selectively deposited onto Cu(111) at cryogenic temperatures. XMCD was used to measure temperature and direction dependent magnetization curves. The clusters are superparamagnetic at the lowest temperature measured (10 K). Their magnetization curves are consistent with magnetic moments of ≈2.5μB per atom which are thus enhanced over the bulk values. Within experimental accuracy, the clusters do not present magnetocrystalline anisotropy in the temperature range of 10 K to 60 K.  相似文献   

15.
We compare experimentally measured and ab initio computed photoelectron spectra of negatively charged deuterated silicon clusters ( , 4m10, 0n2) produced in a plasma environment. Based on this comparison, we discuss the kinetics and thermodynamics of the cluster formation and the effect of deuterium on the geometrical and electronic structure of the clusters.  相似文献   

16.
The geometric structures, energetics and electronic properties of the recently discovered BN nanocones are investigated using first-principles calculations based on the density-functional theory. We have proposed one particular structure for BN nanocones associated with the 240° disclination, derived by the extraction of four 60° segments, presenting as characteristic four pentagons at the apex and termination in two atoms. The cones are simulated by three clusters containing 58 B plus N atoms and additional 12 H atoms to saturate the dangling bonds at the edge. The most stable configuration is obtained when the two terminating atoms are one B and one N. For the cases where the two terminating atoms are of the same kind, the tip with B atoms is determined to have lower binding energy than with N atoms. The local densities of states of these BN nanocones are investigated and sharp states are found in the regions close (below and above) to the Fermi energy. Received 14 October 2002 / Received in final form 6 December 2002 Published online 11 February 2003 RID="a" ID="a"e-mail: ppiquini@smail.ufsm.br  相似文献   

17.
The electronic spectra for double-wall zigzag and armchair nanotubes are found. The influence of nanotube curvatures on the electronic spectra is also calculated. Our finding that the outer shell is hole doped by the inner shell is in the difference between Fermi levels of individual shells which originate from the different hybridization of π orbital. The shift and rotation of the inner nanotube with respect to the outer nanotube are investigated. We found stable semimetal characteristics of the armchair DWNTs in regard of the shift and rotation of the inner nanotube. We predict the shift of kF towards the bigger wave vectors with decreasing of the radius of the armchair nanotube.  相似文献   

18.
The properties of nanowires were investigated with ab initio calculations based on the density-functional theory. The molecules build weakly coupled one-dimensional chains, like and Mo6S9-xIx, and the crystals are strongly uniaxial in their mechanical and electronic properties. The calculated moduli of elasticity and resilience along the chain axis are c11 = 320 GPa and ER = 0.53 GPa, respectively. The electronic band structure and optical conductivity indicate that the crystals are good quasi-one-dimensional conductors. The frequency-dependent complex dielectric tensor ε, calculated in the random-phase approximation, shows a strong Drude peak in ε, i.e., for the electric field polarised parallel to the chain axis, and several peaks related to interband transitions. The electron energy loss spectrum is weakly anisotropic and has a strong peak at the plasma frequency ħωp ≈20 eV. The stability analysis shows that is metastable against the formation of the layered .  相似文献   

19.
Using a parameterized density-functional tight-binding method we have calculated the electronic and structural properties of Ge–Si nanoparticles. Starting with a spherical part of a zinc-blende/diamond crystal (with the center of the sphere at the mid-point of a nearest-neighbour bond) we have constructed initial structures that subsequently were allowed to relax. Structures consisting solely of Ge atoms or solely of Si atoms were studied, together with core-shell structures for which one semiconductor forms a shell on the core of the other semiconductor. Moreover, homogeneous, ordered SiGe structures as well as structures with a semisphere of one semiconductor and a semisphere of the other were also considered. In analysing the results special emphasis is put on identifying particularly stable structures, on explaining the occurrence of those, on the spatial distribution of the frontier orbitals, and on the variation of the total energy with structure and composition.  相似文献   

20.
We study the interaction between tin(II) porphyrin (SnPor) with platinum and non-precious Group 8B metals (iron, cobalt and nickel) by density functional theory and discuss the electronic properties of the resulting products. We also model the interaction of the resulting compounds with water where applicable. Our studies indicate that, SnPor-Ni possesses electronic properties similar to SnPor-Pt, suggesting that it may possess similar photocatalytic properties for reduction reactions, such as converting water to hydrogen gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号