首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoluminescence of interwell excitons in GaAs/AlGaAs double quantum wells (n-i-n heterostructure) containing large-scale random potential fluctuations in the planes of heteroboundaries is studied. The properties of excitons, in which a photoexcited electron and a hole are spatially separated in neighboring quantum wells, were investigated upon variation of the power density of off-resonance laser excitation and temperature (1.5–4.2 K), both under lateral (in the heteroboundary plane) confinement of the excitation region to a few micrometers and without such a limitation (directly from the region of laser-induced photoexcitation focused to a spot not exceeding 30 μ. Under low pumping (with a power smaller than a microwatt), interwell excitons are strongly localized due to small-scale random potential fluctuations and the corresponding photoluminescence line is nonhomogeneously broadened to 2.5–3.0 meV. With increasing pumping power, the narrow line of delocalized excitons with a width of approximately 1 meV emerges in a threshold manner (the intensity of this line increases superlinearly near the threshold with increasing pumping). For a fixed pumping, the intensity of this line decreases linearly upon heating until it completely vanishes from the spectrum. The observed effect is attributed to Bose condensation in a quasi-two-dimensional system of interwell excitons. Within the proposed model, we show that the linear mode in the behavior of the luminescence intensity until its disappearance in the continuum of the photoluminescence spectrum upon a change in temperature is observed only for the condensed part of interwell excitons. At the same time, the luminescence of the above-the-condensate part of excitons is almost insensitive to temperature variations in the temperature range studied.  相似文献   

2.
The luminescence of interwell excitons in GaAs/AlGaAs double quantum wells (n-i-n heterostructures) with large-scale fluctuations of random potential in the heteroboundary planes was studied at low temperatures down to 0.5 K. The properties of excitons whose photoexcited electron and hole are spatially separated in the neighboring quantum wells by a tunneling barrier were studied as functions of density and temperature. The studies were performed within domains about one micron in size, which played the role of macroscopic traps for interwell excitons. For this purpose, the sample surface was coated with a metal mask containing special openings (windows) of a micron size or smaller. Both photoexcitation and observation of luminescence were performed through these windows by the fiber optic technique. At low pumping powers, the interwell excitons were strongly localized because of the residual charged impurities, and the corresponding photoluminescence line was nonuniformly broadened. As the laser excitation power increased, a narrow line due to delocalized excitons arose in a threshold-like manner, after which its intensity rapidly increased with growing pumping and the line itself narrowed (to a linewidth less than 1 meV) and shifted toward lower energies (by about 0.5 meV) in accordance with the filling of the lowest exciton state in the domain. An increase in temperature was accompanied by the disappearance of the line from the spectrum in a nonactivation manner. The phenomenon observed in the experiment was attributed to Bose-Einstein condensation in a quasi-two-dimensional system of interwell excitons. In the temperature interval studied (0.5–3.6) K, the critical exciton density and temperature were determined and a phase diagram outlining the exciton condensate region was constructed.  相似文献   

3.
Luminescence spectra of interwell excitons in GaAs/AlGaAs double quantum wells with electric-field-tilted bands (n-i-n) structures were studied. In these structures the electron and the hole in the interwell exciton are spatially separated between neighboring quantum wells by a narrow AlAs barrier. Under resonant excitation by circularly polarized light the luminescence line of the interwell excitons exhibited appreciable narrowing as their concentration increased and the degree of circular polarization of the photoluminescence increased substantially. Under resonant excitation by linearly polarized light the alignment of the interwell excitons increased as a threshold process with increasing optical pumping. By analyzing time-resolved spectra and the kinetics of the photoluminescence intensity under pulsed excitation it was established that under these conditions the rate of radiative recombination increases substantially. The observed effect occurs at below-critical temperatures and is interpreted in terms of the collective behavior of the interwell excitons. Studies of the luminescence spectra in a magnetic field showed that the collective exciton phase is dielectric and in this phase the interwell excitons retain their individual properties.  相似文献   

4.
The luminescence of interwell excitons in GaAs/AlGaAs double quantum wells (n-i-n heterostructures) containing large-scale random-potential fluctuations was studied. The study dealt with the properties of an exciton whose photoexcited electron and hole are spatially divided between the neighboring quantum wells under density variation and at temperatures of down to 0.5 K. We investigated domains ∼1 μm in size, which act as macroscopic exciton traps. Once the resonance laser pump power reaches a certain threshold, a very narrow delocalized exciton line appears (with a width less than 0.3 meV), which grows strongly in intensity with increasing pump power and shifts toward lower energies (by approximately 0.5 meV) in accordance with the exciton buildup in the lowest state in the domain. As the temperature increases, this spectral line disappears in a nonactivated manner. This phenomenon is assigned to Bose condensation occurring in the quasi-two-dimensional system of interwell excitons. The critical exciton density and temperature were determined within the temperature interval studied (0.5 to 3.6 K), and a phase diagram specifying the exciton condensate region was constructed. __________ Translated from Fizika Tverdogo Tela, Vol. 46, No. 1, 2004, pp. 168–170. Original Russian Text Copyright ? 2004 by Dremin, Larionov, Timofeev.  相似文献   

5.
The luminescence of interwell excitons in double quantum wells based on GaAs/AlGaAs semiconductor heterostructures (n-i-n structures) in a lateral trap prepared with the use of an inhomogeneous electric field was studied at helium temperatures. A rather strong and inhomogeneous electric field occurred in the depth of the heterostructure when a current passed through the contact between the conducting tip of a tunneling microscope and the heterostructure surface to the bulk region containing a built-in gate. Because of the Stark shift of energy bands in the electric field, the photoexcited electrons and holes are spatially separated in neighboring quantum wells by a tunnel-transparent barrier and are bound into interwell quasi-two-dimensional excitons. These excitons have a dipole moment even in the ground state. Therefore, electrostatic forces in the inhomogeneous electric field cause the excitons to move in the plane of quantum wells toward the maximum field region and eventually accumulate in the lateral trap artificially prepared in such a way. The maximum trap depth achieved through the inhomogeneous electric field was 13.5 meV, and its lateral size was about 10 μm. It is shown that, in the traps prepared in this way, photoexcited interwell excitons behave with increasing concentration at sufficiently low temperatures (T=2K) in the same fashion as in the lateral traps caused by large-scale fluctuations of the random potential. At concentrations exceeding the percolation threshold, the interwell excitons condense into the lowest energy state in the trap.  相似文献   

6.
Experiments associated with direct observations of a collective state in a gas of interacting interwell excitons in GaAs/AlGaAs double quantum wells are discussed. The structures constitute Schottky photodiodes. In a metallic gate, circular windows of various sizes (diameters of 2 to 20 μm) are etched by means of electronic-beam lithography. Through these windows, the photoluminescence of interwell and intrawell excitons is excited and detected. A microscopic device allows the observation of the spatial structure of luminescence with a resolution of 1 μm through the windows of a sample placed in superfluid helium. Using optical interference filters, the spatial structure of the luminescence is analyzed selectively in the spectrum for interwell and intrawell excitons under the same experimental conditions. It is found that the photoluminescence of interwell excitons under certain conditions exhibits an axisymmetric spatial structure: along the perimeter of the windows through which the photoluminescence is observed, a regular ring pattern of equidistant bright spots of the luminescence of interwell excitons appears. This structure appears only above the photoexcitation power threshold and the number of equidistant bright spots in the ring increases with the pumping power. At high pumping powers, the structure of distinct periodic luminescence spots is smeared. At a fixed pumping power, the phenomenon exhibits explicit critical temperature dependence: the structure of regularly located luminescence spots is smeared at T > 4 K. Axisymmetric spatial configurations of equidistant luminescence spots are observed in windows of the diameters 2, 5, and 10 μm. For intrawell excitons, the spatial structure of luminescence is not observed under similar experimental conditions: the luminescence of intrawell excitons is spatially uniform in all the windows under investigation. The effect is a result of the collective behavior of interacting interwell excitons.  相似文献   

7.
Photoluminescence spectra of interwell excitons in double GaAs/AlGaAs quantum wells (n-i-n structures) have been investigated (an interwell exciton in these systems is an electron-hole pair spatially separated by a narrow AlAs barrier). Under resonance excitation by circularly polarized light, the luminescence line of interwell excitons exhibits a significant narrowing and a drastic increase in the degree of circular polarization of photoluminescence with increasing exciton concentration. It is found that the radiative recombination rate significantly increases under these conditions. This phenomenon is observed at temperatures lower than the critical point and can be interpreted in terms of the collective behavior of interwell excitons.  相似文献   

8.
The kinetics of a spin-aligned gas of interwell excitons in GaAs/AlGaAs double quantum wells (n-i-n heterostructure) is studied. The temperature dependence of the spin relaxation time for excitons, in which a photoexcited electron and hole are spatially separated between two adjacent quantum wells, is analyzed. For this purpose, use was made of pulsed circularly polarized resonant photoexcitation of intrawell 1sHH excitons by a femtosecond frequency-controlled laser. A sharp increase in the spin-relaxation rate is observed for interwell excitons upon a change in temperature from 2 to 3.6 K. This effect is associated with indirect evidence of the coherence of the collective phase of interwell excitons at temperatures below the critical value.  相似文献   

9.
Correlations of the luminescence intensity (the second-order correlation function g (2)(τ)), where τ is the delay time between the photons detected in pairs) under the conditions of the Bose-Einstein condensation (BEC) of dipolar excitons has been studied in a temperature range of 0.45–4.2 K. Photoexcited dipolar excitons have been accumulated in a lateral trap in a GaAs/AlGaAs Schottky diode with a 25-nm wide single quantum well with an electric bias applied across the heterolayers. Two-photon correlations have been measured with the use of a two-beam intensity interferometer with a time resolution of }~0.4 ns according to the well-known classical Hanbury-Brown-Twiss scheme. The photon bunching has been observed at the onset of Bose-Einstein condensation manifested by the appearance of a narrow exciton condensate line in the luminescence spectrum at an increase in the optical pumping (the line width near the threshold is ?200 μeV). At the same time, the two-photon correlation function itself obeys the super-Poisson distribution, g (2)(τ) > 1, at time scale τc ? 1 ns of the system coherence. The photon bunching is absent at a pumping level substantially below the condensation threshold. The effect of bunching also decreases at pumping significantly above the threshold, when the narrow exciton condensate line starts to dominate in the luminescence spectra, and finally disappears with the further increase in the optical excitation. In this region, the distribution of pair photon correlations is a Poisson distribution manifesting the united quantum coherent state of the exciton condensate. Under the same conditions, the first-order spatial correlation function g (1)(r) determined from the interference pattern of the luminescence signals from the spatially separated parts of the condensate at constant pumping remains noticeable at distances of no less than 4 μm. The discovered effect of photon bunching is very sensitive to temperature and decreases by several times with a temperature increase in the range of 0.45–4.2 K. Assuming that the luminescence of the dipolar excitons directly reflects the coherence properties of the gas of interacting excitons, the discovered photon bunching at the onset of condensation, where the fluctuations of the exciton density and, consequently, of the luminescence intensity are most significant, indicates a phase transition in the interacting Bose gas of excitons, which is an independent way of detecting the Bose-Einstein condensation of excitons.  相似文献   

10.
The interwell radiative recombination from biased double quantum wells (DQW) in pin GaAs/AlGaAs heterostructures is investigated at different temperatures and external electrical fields. The luminescence line of interwell recombination of spatially separated electron-hole pairs exhibits systematic narrowing with temperature increase from 4.5 to 30 K. A theoretical model is presented which explains the observed narrowing in terms of lateral thermally activated tunneling of spatially separated e-h pairs localized by random potential fluctuations in the quantum wells. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 8, 580–585 (25 April 1998) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

11.
The time evolution and kinetics of photoluminescence (PL) spectra of interwell excitons in double GaAs/AlGaAs quantum wells (n-i-n structures) have been investigated under the pulse resonance excitation of intrawell 1sHH excitons using a pulsed tunable laser. It is found that the collective exciton phase arises with a time delay relative to the exciting pulse (several nanoseconds), which is due to density and temperature relaxation to the equilibrium values. The origination of the collective phase of interwell excitons is accompanied by a strong narrowing of the corresponding photoluminescence line (the line width is about 1.1 meV), a superlinear rise in its intensity, a long time in the change of the degree of circular polarization, a displacement of the PL spectrum toward lower energies (about 1.5 meV) in accordance with the filling of the lowest state with the exciton Bose condensate, and a significant increase in the radiative decay rate of the condensed phase. The collective exciton phase arises at temperatures T<6 K and interwell exciton densities n=3×1010 cm?2. Coherent properties of the collective phase of interwell excitons and experimental manifestations of this coherence are discussed.  相似文献   

12.
We have fabricated very high-quality In0.13Ga0.87N/GaN multiple quantum wells with thickness as small as on (0 0 0 1) sapphire substrate using metal organic chemical vapour deposition (MOCVD). We have investigated these ultra-thin multiple quantum wells by continuous wave (cw) and time resolved spectroscopy in the picosecond time scales in a wide range of temperatures from 10 K to 290 K. In the luminescence spectrum at 10 K we observed a broad peak at 3.134 eV which was attributed to the quantum wells emission of InGaN. The full-width at half-maximum of this peak was 129 meV at 10 K and the broadening at low temperatures which was mostly inhomogeneous was thought to be due to compositional fluctuations and interfacial disorder in the alloy. The ultra narrow width of the quantum well was found to have a very profound effect in increasing the emission linewidth. We also observed an intense and narrow peak at 3.471 eV due to the GaN barrier. The temperature dependence of the luminescence was studied. The peak positions and intensities of the different peaks were obtained after a careful Lorentzian analysis. The activation energy of the InGaN quantum well emission peak was estimated as 69 meV. The lifetime of the quantum well emission was found to be 720 ps at 10 K. The results were explained by considering the localization of the excitons due to potential fluctuations. At higher temperatures the non-radiative recombination was found to be very dominant.  相似文献   

13.
The ratio of the densities of intra-and interwell excitons in a symmetric system of coupled quantum wells — a superlattice based on a GaAs/AlGaAs heterostructure — is investigated over a wide range of optical excitation power densities. Conversion of interwell excitons into intrawell excitons as a result of exciton-exciton collisions is observed at high exciton densities. Direct evidence for such a conversion mechanism is the square-root dependence of the interwell exciton density on the optical excitation level. The decrease in the lifetime of interwell excitons with increasing excitation density, as measured directly by time-resolved spectroscopy methods, confirms the explanation proposed for the effect. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 8, 623–628 (25 April 1997)  相似文献   

14.
The linear polarization of luminescence from the Bose-Einstein condensate of dipolar (indirect) excitons accumulated in the ring lateral traps in GaAs/AlGaAs Schottky-diode heterostructures with a wide single quantum well has been observed. Luminescence from direct excitons remains unpolarized under the same experimental conditions. It has been shown that the linear polarization of the exciton condensate may arise from the anisotropic electron-hole (e–h) exchange interaction associated with the lateral anisotropy of the confining potential. The interaction mixes and splits the ground state of optically active excitons on heavy holes (with angular momentum projections of m=±1). The split spectral components from the corresponding angular momentum projections are linearly polarized in mutually orthogonal directions. Under this e–h exchange, the condensate component of excitons should appear in the lowest of the split states and luminescence from the Bose-Einstein condensate of excitons in such a split state becomes linearly polarized along the 〈110〉 crystallographic direction in the quantum well plane. The observed effect is a manifestation of spontaneous symmetry breaking in Bose-Einstein condensation of excitons.  相似文献   

15.
Photoluminescence and Raman scattering spectra in CdTe/ZnTe heterostructures and superlattices with narrow quantum wells (4.8–9.2 Å) in a temperature range of 5–300 K have been measured. The temperature dependences of the intensity of exciton luminescence in isolated quantum wells have been studied, and the thermal activation energies associated with the effective barriers for electrons and holes have been determined. In CdTe/ZnTe heterostructures, the binding energies of an exciton with a heavy hole have been determined as functions of the quantum well width. The multiphonon Raman spectra that exhibit distinctive features, such as the weak intensity of nLO phonon lines of ZnTe (n < 8), the absence of their dependence on the number n (n > 2), and the multiple participation in scattering of acoustic LA phonons with large wave vector, have been investigated. The results have been explained based on the concept of the relaxation of hot excitons over the exciton band.  相似文献   

16.
The exciton-polariton transfer and absorption in regular and disordered structures with a finite number of quantum wells are studied theoretically. The transfer matrix method is invoked in the exciton resonance region to calculate the reflectivity, transmissivity, and absorptivity spectra, as well as the integrated absorptivity as a function of the γ/Γ0 ratio of the parameters of nonradiative and radiative damping of quasi-two-dimensional excitons. It is shown that the integrated absorptivity as a function of γ (temperature) follows a universal pattern, more specifically, it increases monotonically from zero at γ = 0 to saturate at γ/Γ0 ? 1. Because the exciton-polariton absorption being single mode, the integrated absorptivity in Bragg quantum-well structures is substantially lower than that in short-period structures, in which absorption involves the whole spectral multitude of modes. The intrawell disorder associated with fluctuations in the frequencies of exciton excitation in quantum wells enhances the integrated absorptivity to the level typical of light absorption with no resonance among excitons of different quantum wells. The interwell disorder originating from fluctuations in quantum-well separation likewise leads to an increase in the integrated absorptivity.  相似文献   

17.
The Bose condensation of spatially indirect (dipolar) excitons in a wide single quantum well in an electric field transverse to the heterolayers is analyzed. Voltage is applied between a metallic film on the surface (Schottky gate) and a conducting electron layer inside a heterostructure (integrated electrode). The excitation of dipolar excitons and observation of their luminescence are performed through circle windows in a metallic mask 5 μm in diameter. Excitons are collected in a ring lateral trap, which is formed along the window perimeter owing to the strongly inhomogeneous electric field. When the critical condensation conditions in pump and temperature are reached, a narrow line of dipolar excitons corresponding to the exciton condensate appears stepwise in the luminescence spectrum. Under these conditions, a spatially periodic structure of equidistant luminescence spots appears in the luminescence pattern that is observed through a window with a resolution of about 1 μm and is selected by means of an interference filter. An in situ optical Fourier transform of spatially periodic structures from the real space to the k space is derived. The resulting Fourier transforms reproducing the pattern of the luminescence intensity distribution in the far field exhibit the result of the destructive and constructive interference, as well as the fact that the luminescence is directed along the normal to the heterolayers. These results are consequences of the large-scale coherence of the condensed exciton state in the ring lateral trap. Direct measurements of double-beam interference from pairs of luminescence spots in the ring show that the spatial coherence length is no less than 4 μm. Such a large scale means that the experimentally observed periodic luminescence structures are described by a common wavefunction under the condition of the Bose condensation of dipolar excitons.  相似文献   

18.
The possibility of magnetic field control of the spectral and polarization characteristics of exciton recombination is examined in Cd(Mg, Mn) Te-based asymmetric double quantum wells. At low fields, the exciton transition in a semimagnetic well is higher in energy than that in a nonmagnetic well and the interwell exciton relaxation is fast. In contrast, when the energy order of the exciton transitions reverses at high fields, unexpectedly slow relaxation of σ polarized excitons from the nonmagnetic well to the σ+-polarized ground state in the semimagnetic well is observed. Strong dependence of the total circular polarization degree on the heavy-light hole splitting Δ hh-lh in the nonmagnetic well is found and attributed to the spin dependent interwell tunneling controlled by exciton spin relaxation. Such a slowing down of the relaxation allows separation of oppositely spin-polarized excitons in adjacent wells. The text was submitted by the authors in English.  相似文献   

19.
Experimental observations of the collective behavior of interwell excitons in the binary quantum wells with inclined bands under bias are discussed.  相似文献   

20.
The cathodoluminescence spectra of regions of light-emitting structures with multiple InGaN/GaN quantum wells unirradiated and irradiated with an electron beam are investigated in the temperature range from liquid-nitrogen temperature to room temperature. It is shown that a new emission line with an energy of 2.69 eV emerges as a result of irradiation in addition to the initial 2.6 eV line. The intensity of the emission line associated with Mg in p-GaN also increases after irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号