首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Solution-cast membranes from sulfonated polyimide (SPI) and its blend were prepared from polyethersulfone (PES) and SPI. The water uptake and swelling were tested and compared between the SPI membrane and the four kinds of blend membranes. Through comparison of the stability of the membranes, we concluded that the PES could greatly increase the stability of the whole membrane and restrict the swelling. However, the PES did not decrease the water uptake very much. We also compared the fuel cell performance with different membranes. The performance was decreased when the content of the PES in the blend membrane increased. The loss of the fuel cell performance with the blend membranes did not decrease very much before the content of the PES was exceeded 20%. It was prospected that the blend membrane could increase the stability of the SPI and, more importantly, even replace the commercial Nafion membranes.  相似文献   

2.
This paper describes our work on the synthesis of a series of sulfonated homo‐/co‐polyimides (SPI) which were obtained by post‐sulfonation method over three steps. In the first step, 4,4′‐oxydianiline (ODA) and 4,4′‐diaminodiphenylsulfone (DDS) dissolved in N‐methyl pyrrolidone (NMP) were reacted with benzophenonetetracarboxylic dianhydride (BTDA) in order to yield poly(amic acid) (PAA). Secondly, precipitated PAA was sulfonated via concentrated sulfuric acid (95–98%) at room temperature to give post‐sulfonated PAA (PSPAA). Finally, PSPAA was converted into post‐sulfonated PI (PSPI) by the thermal imidization method. PSPIs with ion exchange capacity (IEC) ranging from 0.20 to 0.67 meq/g were prepared. The thermal properties of the PSPIs were evaluated and high desulfonation temperature was found in the range of 190–350°C, suggesting the high stability of sulfonic acid groups. In water, PSPI‐5 membrane displayed similar proton conductivity to Nafion®117, whereas this membrane showed poor conductivity in dry state. All PSPIs displayed good solubility in common polar aprotic solvents such as NMP and dimethylacetamide (DMAc). Furthermore, the effects of post‐sulfonation reaction on chemical structure, thermal oxidative behavior, and physical properties of the PSPI membranes such as membrane quality/stability and water uptake were discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
4.
To prepare proton conductive membrane for direct methanol fuel cells (DMFC), a novel sulfonated aromatic diamine monomer, 1,4-bis(4-amino-2-sulfonic acid-phenoxy)-benzene (DSBAPB) was synthesized and characterized by 1H NMR and FT-IR. Then a series of sulfonated polyimides (SPIs) were prepared from DSBAPB with 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTDA) and a non-sulfonated diamine, 4,4′-oxydianiline (ODA) via one-step high-temperature polymerization method. The sulfonation degree of the SPIs can be controlled by changing the mole ratio of sulfonated monomer to non-sulfonated monomer. The obtained SPI membranes exhibit desirable proton conductivity ranged from 7.9 × 10−3 to 7.2 × 10−2 S cm−1 and low methanol permeability of less than 2.85 × 10−7 cm2 s−1. Furthermore, the hydrolysis stability of the obtained SPIs is better than the BDSA based SPIs caused by the flexible structure.  相似文献   

5.
The Pt/C catalysts containing various types of carbon support were prepared via electrochemical oxidation/dispersion. Their different catalytic activity in CO-stripping and ethanol electrooxidation was revealed.  相似文献   

6.
Novel aromatic polymers bearing polar pyridine units in the main chain and side chain crosslinkable hydroxyl and propargyl groups have been successfully synthesized. The polymers have been investigated in terms of their critical properties related to their application in high temperature polymer electrolyte membrane fuel cells, such as doping ability, mechanical properties, and thermal stability. Crosslinked membranes were prepared by direct crosslinking of hydroxyl side chain groups with decafluorobiphenyl used for the first time as a crosslinking agent. However, further functionalization of hydroxyl groups to the propargyl derivative has also led to crosslinked polymers after thermal curing. Both types of crosslinked membranes exhibited higher glass transition temperatures as well as lower doping levels when doped in phosphoric acid compared with the non crosslinked analogs, confirming the formation of a successfully crosslinked network. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
The PdFe nanorods (PdFe-NRs) with tunable length were synthesized by an organic phase reaction of [Pd(acac)2] and thermal decomposition of [Fe(CO)5] in a mixture of oleyamine and octadecene at 160 °C. They show a better proton exchange membrane fuel cell (PEMFC) performance than commercial Pt/C in working voltage region of 0.80–0.65 V, due to their high intrinsic activity to oxygen reduction reaction (ORR), reduced cell inner resistance, and improved mass transport.  相似文献   

8.
Nano-catalyzed membrane with different platinum (Pt) catalyst loadings (0.25 to 1 mg cm?2) was investigated for proton exchange membrane fuel cell applications, and the Pt loading on the Nafion membrane was prepared by non-equilibrium impregnation reduction method. The prepared catalyzed membranes were subjected to various characterisations, namely, X-ray diffraction, high-resolution scanning electron microscopy (HRSEM) with energy-dispersive X-ray, cyclic voltammetry, polarisation and electrochemical impedance spectroscopy. The polycrystalline fcc cubic structure and the particle size of Pt catalyst were estimated by X-ray diffraction analysis. The membrane with 0.4 mg cm?2 of Pt loading exhibits a favourable surface morphology which is confirmed by HRSEM image. Electrochemical investigations were clearly evident that the uniform distributions of Pt particles with fine pores on Nafion membrane facilitated the three-phase boundary which leads to a better cell performance. Electrochemical impedance spectroscopy demonstrated that the cell constructed using 0.4 mg cm?2 of platinum-loaded membrane has lower resistance than the other Pt loading.  相似文献   

9.
A novel preparation method for a composite proton exchange membrane with reinforced strength and self-humidifying property was developed. Using self-assembly method, highly dispersed poly(diallyldimethylammonium chloride) (PDDA) stabilized Pt nanoparticles were mounted onto the pores of poly(tetrafluoroethylene) (PTFE) porous film to serve the self-humidifying purpose. With Pt nanoparticles fixed on the PTFE pores, the potential problem of any short circuit because of the use of metal nanoparticles can be prevented. Pt-PDDA/PTFE substrate in the composite membrane can enhance the mechanical strength of the membrane and distribute self-humidifying layer adjacent to the anode side. Compared with the cells fabricated with conventional Nafion® and PTFE/Nafion membranes, the performance of the cells with this composite membrane is dramatically improved under dry conditions. Electrochemical impedance spectroscopy technique revealed that these self-humidifying composite membranes could minimize membrane conductivity loss under dry conditions.  相似文献   

10.
A series of sulfonated poly(arylene ether sulfone)s (SPEs) containing fluorenyl groups as bulky components were synthesized and characterized for fuel cell applications. Introduction of disodium 3,3′-disulfo-4,4′-difluorophenyl sulfone (SFPS) monomer gave ionomers with high acidity and accordingly high proton conductivity as well as high proton diffusion coefficient (Dσ) at low humidity. The membrane of SPE60 (where the number denotes mole percentage of the component containing sulfonic acid groups; IEC (ion exchange capacity) = 1.68 mequiv./g) exhibited high proton conductivity of 4.6 × 10−3 S/cm at 40% RH and 80 °C, which is one order of magnitude higher than that (6 × 10−4 S/cm) of our previous SPE (SPE-1, IEC = 1.58 mequiv./g). Dσ of SPE60 membrane was ca. 4 times higher than that of the SPE-1 membrane at low water volume fraction. SPE membranes showed good oxidative and hydrolytic stability as well as favorable thermal and mechanical properties. Small-angle X-ray scattering analyses showed that the phase separation of SPE membranes was much less developed than that of the perfluorinated Nafion membrane which accounts for lower hydrogen and oxygen permeability of the former membranes.  相似文献   

11.
New hydrophobic protic ionic liquid, 2-butylaminoimidazolinium bis(trifluoromethylsulfonyl)imide (BAIM-TFSI), has been synthesized. The ionic liquid showed good thermal stability to at least 350 °C. The conductivity of BAIM-TFSI determined by electrochemical impedance method was found to be 5.6 × 10?2 S/cm at 140 °C. Homogeneous composite films based on commercial polyimide (PI) Matrimid and BAIM-TFSI containing 30–60 wt% of ionic liquid were prepared by casting from methylene chloride solutions. Thermogravimetric analysis data indicated an excellent thermal stability of PI/BAIM-TFSI composites and thermal degradation points in the temperature range 377 °C–397 °C. The addition of ionic liquid up to 50 wt% in PI films does not lead to any significant deterioration of the tensile strength of the polymer. The dynamic mechanical analysis results indicated both an increase of storage modulus E′ of PI/BAIM-TFSI composites at room temperature and a significant E′ decrease with temperature compared with the neat polymer. The cross-linking of the PI with polyetheramine Jeffamine D-400 allowed to prepare PI/Jeffamine/BAIM-TFSI (50%) membrane with E′ value of 300 MPa at 130 °C. The ionic conductivity of this cross-linked composite membrane reached the level of 10?2 S/cm at 130 °C, suggesting, therefore, its potential use in medium-temperature fuel cells operating in water-free conditions.  相似文献   

12.
A filled ionomeric membrane is achieved by dispersing several % in weight of the phosphatoantimonic acid H3Sb3P2O14, xH2O (H3), in a Sulfonated PolySulfone (SPS) solution1). Water up-take of pristine and filled SPS of different cation exchange capacity (cec) was measured at 25°C and 80°C: It is higher for filled than unfilled membrane. Comparatively, protonic conductivity measurements performed on the same samples show a higher conductivity for the filled samples than for the unfilled. The conductivity value is higher than that expected from the overall calculated concentration in charge carriers: A conductivity value of 0.06 S.cm−1 is gained at 80°C under 100% Relative Humidity (HR) for a 1.4 meq.g−1 cec SPS filled with 8% in H3.  相似文献   

13.
Poly(arylene ether sulfone)-based ionomers containing sulfofluorenyl groups have been synthesized for applications to polymer electrolyte membrane fuel cells (PEMFCs). In order to achieve high proton conductivity and chemical, mechanical, and dimensional stability, the molecular structure of the ionomers has been optimized. Tough, flexible, and transparent membranes were obtained from a series of modified ionomers containing methyl groups with the ion-exchange capacity (IEC) ranging from 1.32 to 3.26 meq/g. Isopropylidene tetramethylbiphenylene moieties were more effective than the methyl-substituted fluorenyl groups in giving a high-IEC ionomer membrane with substantial stability to hydrolysis and oxidation. Dimensional stability was significantly improved for the methyl-substituted ionomer membranes compared to that of the non-methylated ones. This new ionomer membrane showed comparable proton conductivity to that of the perfluorinated ionomer membrane (Nafion 112) under a wide range of conditions (80-120 degrees C and 20-93% relative humidity (RH)). The highest proton conductivity of 0.3 S/cm was obtained at 80 degrees C and 93% RH. Although there is a decline of proton conductivity with time, after 10 000 h the proton conductivities were still at acceptable levels for fuel cell operation. The membranes retained their strength, flexibility, and high molecular weight after 10 000 h. Microscopic analyses revealed well-connected ionic clusters for the high-IEC membrane. A fuel cell operated using the polyether ionomer membrane showed better performance than that of Nafion at a low humidity of 20% RH and high temperature of 90 degrees C. Unlike the other hydrocarbon ionomers, the present membrane showed a lower resistance than expected from its conductivity, indicating superior water-holding capability at high temperature and low humidity.  相似文献   

14.
Platinum nanoparticles (Pt NPs) on carbon black (CB) have been used as catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells for a while. However, this catalyst has suffered from aggregation and dissolution of Pt NPs as well as CB dissolution. In this study, we resolve those issues by developing perfluorosulfonic acid (PFSA)-functionalized Pt/graphene as a high-performance ORR catalyst. The noncovalently bonded PFSA remarkably decreases the dissolution and aggregation of Pt NPs. Moreover, unlike typical NP functionalization with other capping agents, PFSA is a proton conductor and thus efficiently develops a triple-phase boundary. These advantageous features are reflected in the improved cell performance in electrochemical active surface area, catalytic activity, and long-term durability, compared to those of the commercial Pt/C catalysts and graphene-based catalysts with no such treatment.  相似文献   

15.
We propose an alternative new material (2,4,5-trifluoroimidazole impregnated Nafion) for use as a high-temperature, water-free membrane for proton-exchange membrane fuel cells. This material has been tested computationally using molecular dynamics and quantum mechanics techniques, leading to an estimated conductivity of approximately 0.06 S/cm at 177 degrees C. This material overcomes the weakness of the imidazole-impregnated membranes, i.e., the poisoning of the Pt electrode. We find that 2,4,5-trifluoroimidazole binds weakly to platinum surfaces, so poisoning is not expected.  相似文献   

16.
Arylene ether multiblock copolymers of the (AB)n-type with various degrees of sulfonation have been prepared by a two-step polycondensation procedure. Multiblock copolymers in high yields and of high molecular weights were obtained. For comparison random copolymers with the same overall composition were synthesized. The theoretical ion-exchange capacities (IEC) of the materials were ranging from 0.50 mmol/g to 1.25 mmol/g. The water-uptake of the multiblock copolymers showed a linear dependency from the IEC and was increasing with increasing IEC. No differences were observed between random and block copolymers. Furthermore, the hydrolytic stability of aromatic sulfonic acid groups was investigated in this study. Aromatic sulfonic acids, having additional electron donating groups, especially in ortho- or para-position to the sulfonic acid group are sensitive to hydrolytic desulfonation. On the other hand electron-withdrawing groups in meta-position showed a stabilizing effect.  相似文献   

17.
Polysulfones (PSUs) carrying short pendant alkyl side-chains with terminal sulfonic acid units have been prepared and studied as proton-conducting membrane materials. The first step in the preparation involved quenching of lithiated PSU with SO2 gas, resulting in sulfinated PSU. In the second step, the lithium sulfinate units on the polymer were reacted with sodium 2-bromoethanesulfonate, sodium 3-bromopropanesulfonate, or 1,4-butane sultone to produce sulfoethylated, sulfopropylated, or sulfobutylated PSUs, respectively. Analysis by thermogravimetry showed that membranes based on the sulfoalkylated polymers were stable up to approximately 300 °C under N2 atmosphere. Calorimetry measurements revealed that the modified polymers absorbed large amounts of non-freezing water, corresponding to 11–14 mol H2O/mol SO3H under immersed conditions. The proton conductivity of a membrane based on a PSU carrying 0.9 sulfopropyl chains per repeating unit was measured to be 77 mS/cm at 70 °C under humidifying conditions.  相似文献   

18.
阳极脉冲排放能有效提高氢气的利用率,延长燃料电池的使用寿命.以催化层活性面积为25 cm2的燃料单电池为研究对象,排放触发电压设定为其稳定运行时电势值的90%.通过改变阳极进气压力和电池温度等操作条件,研究电池的脉冲周期和电池性能,并进行比较分析,得出阳极脉冲排放的最优方案.  相似文献   

19.
In this work, for the first time, a simple casting process is used to create an efficient and highly stable cellulose acetate (CA) based membrane with dispersive graphene oxide nanosheets (GO). The successful preparation of GO and its integration into the polymer matrix was verified by structural and morphological characterization using FTIR, TEM, SEM, and XRD. Furthermore, the impact of GO nanosheets and their content on the composite membranes' physicochemical properties is investigated. The water uptake increased up to 24% as the concentration of GO increased, while the ion exchange capacity increased threefold compared to the blank CA membrane. Additionally, increasing GO loading also enhanced the proton conductivity and the tensile strength of the developed membranes. The homogeneous CA/GO nanocomposite membranes with GO filler amounts ranging from 0.3 to 0.8 wt% were found to have excellent proton conductivity varying from 9.2 to 15.5 mS/cm compared to 6.94 mS/cm for Nafion 212. Further, as systematically studied and compared in membrane performance, the overall power density of the membrane electrode assembly (MEA) with GO content was increased up to 519 mW/cm2 compared to 401 mW/cm2 for Nafion 212 with significantly lower cost. The encouraging outcomes of this study pave the way for a simple, environmentally friendly, and cost-effective approach for developing nanocomposite membranes for application in PEMFCs.  相似文献   

20.
《中国化学快报》2021,32(10):3159-3163
Durability is one of the critical issues to restrict the commercialization of proton exchange membrane fuel cells (PEMFCs) for the vehicle application. The practical dynamic operation significantly affects the PEMFCs durability by corroding its key components. In this work, the degradation behavior of a single PEMFC has been investigated under a simulated automotive load-cycling operation, with the aim of revealing the effect of load amplitude (0.8 and 0.2 A/cm2 amplitude for the current density range of 0.1−0.9 and 0.1−0.3 A/cm2, respectively) on its performance degradation. A more severe degradation on the fuel cell performance is observed under a higher load amplitude of 0.8 A/cm2 cycling operation, with ∼10.5% decrease of cell voltage at a current density of 1.0 A/cm2. The larger loss of fuel cell performance under the higher load amplitude test is mainly due to the frequent fluctuation of a wider potential cycling. Physicochemical characterizations analyses indicate that the Pt nanoparticles in cathodic catalyst layer grow faster with a higher increase extent of particle size under this circumstance because of their repeated oxidation/reduction and subsequent dissolution/agglomeration process, resulting in the degradation of platinum catalyst and thus the cell performance. Additionally, the detected microstructure change of the cathodic catalyst layer also contributes to the performance failure that causes a distinct increase in mass transfer resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号