首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In this article we describe a model of the universe consisting of a mixture of the ordinary matter and a so-called cosmic quaternionic field. The basic idea here consists in an attempt to interpret as the energy density of the quaternionic field whose source is any form of energy including the proper energy density of this field. We set the energy density of this field to and show that the ratio of ordinary dark matter energy density assigned to is constant during the cosmic evolution. We investigate the interaction of the quaternionic field with the ordinary dark matter and show that this field exerts a force on the moving dark matter which might possible create the dark matter in the early universe. Such determined fulfils the requirements asked from the dark energy. In this model of the universe, the cosmological constant, the fine-tuning and the age problems might be solved. Finally, we sketch the evolution of the universe with the cosmic quaternionic field and show that the energy density of the cosmic quaternionic field might be a possible candidate for the dark energy.  相似文献   

2.
Since there may exist dark matter particles ν and δ with mass - 10^-1 e V in the universe, the superstructures with a scale of 10^19 solar masses (large number A - 10^19) appeared during the era near and before the hydrogen recombination. Since there are superstructures in the universe, there may be no necessity for the existence of dark energy. For checking the superstructure in the universe by CMB anisotropy, we need to measure CMB angular power spectrum especially around ten degrees across the sky- in more details, While neutrino u is related to electroweak unification, the fourth stable elementary particle 6 may be related to strong-gravity unification, which suggests p + p^- → n + δ^- and that some new baryons appeared in the TeV region.  相似文献   

3.
王斌 《中国物理 C》2007,31(9):874-879
从热力学角度研究了暗能量和暗物质之间的相互作用. 假设相互作用是平衡态上的涨落并考虑此涨落导致的熵的修正, 导出了相互作用的物理表述, 把我们模型和观测结果作了比较.  相似文献   

4.
We demonstrate that if the universe is dominated by the massive cold dark matter, then besides the generally believed thermal distribution of the dark matter relics, there may exist some very energetic nonthermal relics of the dark matter particles in the universe from some unknown sources, such as from decay of supermassive X particle released from topological defect collapse or annihilation. Very interesting, we point out that these high energy dark matter particles may be observable in the current and future cosmic ray experiments.  相似文献   

5.
6.
We discuss the relationship between dark matter and the entropy of the universe, with the premise that dark matter exists in the form of primordial black holes (PBHs) in a hierarchy of mass tiers. The lightest tier includes all PBHs with masses below one hundred solar masses. The second-lightest tier comprises intermediate-mass PIMBHs within galaxies, including the Milky Way. Supermassive black holes at galactic centres are in the third tier. We are led to speculate that there exists a fourth tier of extremely massive PBHs, more massive than entire galaxies. We discuss future observations by the Rubin Observatory and the James Webb Space Telescope.  相似文献   

7.
A new relation for the density parameter Ω is derived as a function of expansion velocity υ based on Carmeli's cosmology. This density function is used in the luminosity distance relation D L. A heretofore neglected source luminosity correction factor (1 − (υ/c)2)−1/2 is now included in D L. These relations are used to fit type Ia supernovae (SNe Ia) data, giving consistent, well-behaved fits over a broad range of redshift 0.1 < z < 2. The best fit to the data for the local density parameter is Ωm = 0.0401 ± 0.0199. Because Ωm is within the baryonic budget there is no need for any dark matter to account for the SNe Ia redshift luminosity data. From this local density it is determined that the redshift where the universe expansion transitions from deceleration to acceleration is z t = 1.095+0.264 −0.155. Because the fitted data covers the range of the predicted transition redshift z t, there is no need for any dark energy to account for the expansion rate transition. We conclude that the expansion is now accelerating and that the transition from a closed to an open universe occurred about 8.54 Gyr ago.  相似文献   

8.
黄无量 《中国物理 C》1996,20(5):409-413
讨论恒星质量、核子质量、暗物质粒子质量和普朗克质量四者间通过大数A~1019联系在一起,而且强相互作用与引力间也唯象地通过大数A似乎有着某种深层的联系.  相似文献   

9.
10.
The inhomogeneous cosmological model with generalized nonstatic Majumdar-Papapetrou metric is considered. The scalar field with negative kinetic energy and some usual matter sources of the gravitational field such as two-component nonlinear sigma model and perfect fluid are presented. Some exact solutions in these models are obtained and analyzed. In particular it is shown that the latent mass effect and effect of accelerating expansion (quintessence) of the Universe exist in these models. The 5-dimensional generalization of the model is presented, too.  相似文献   

11.
12.
In this paper,we investigate the agegraphic dark energy(ADE) model by including the sign-changeable interaction between ADE and dark matter in non-flat universe.The interaction Q can change its sign from Q 0 to Q 0 as the universe expands.This indicates that at first dark matter decays to ADE,and then ADE decays to dark matter.We study the dynamical behavior of the model by using the phase-plane analysis.It is shown numerically that the coupling constant β plays an important role in the evolution of the universe.The equation of state(Eo S) of ADE with the sign-changeable interaction is more likely to cross the phantom divide w_d =-1 from top to bottom with the increasing of the |β|.Whereas in ADE model with usual interaction,wd can cross the phantom divide from bottom to top.We also find that our model is consistent with the observational data.  相似文献   

13.
14.
In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameterζ∝λ01(1+z)n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. 52 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset
(the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known $\Lambda$CDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {r,s} as axes where the fixed point represents theΛCDM model. The possible singularity property in this bulk viscosity
cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous
increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling.  相似文献   

15.
This paper is devoted to study the modified holographic dark energy model by taking its different aspects in the flat Kaluza-Klein universe.We construct the equation of state parameter which evolutes the universe from quintessence region towards the vacuum.It is found that the modified holographic model exhibits instability against small perturbations in the early epoch of the universe but becomes stable in the later times.We also develop its correspondence with some scalar field dark energy models.It is interesting to mention here that all the results are consistent with the present observations.  相似文献   

16.
This paper is devoted to study the modified holographic dark energy model by taking its different aspects in the flat Kaluza-Klein universe. We construct the equation of state parameter which evolutes the universe from quintessence region towards the vacuum. It is found that the modified holographic model exhibits instability against small perturbations in the early epoch of the universe but becomes stable in the later times. We also develop its correspondence with some scalar field dark energy models. It is interesting to mention here that all the results are consistent with the present observations.  相似文献   

17.
By using the solution describing a black hole embedded in the FLRW universe, we obtain the evolving equation of the black hole mass expressed in terms of the cosmological parameters. The evolving equation indicates that in the phantom dark energy universe the black hole mass becomes zero before the Big Rip is reached.  相似文献   

18.
A cosmological model of dark energy interacting with dark matter and another general component of the universe is considered. The equations for the coincidence parameters r and s, which represent the ratios between dark energy and dark matter and the other cosmic fluid respectively, are analyzed in terms of the stability of stationary solutions. The obtained general results allow to shed some light on the equations of state of the three interacting fluids, due to the constraints imposed by the stability of the solutions. We found that for an interaction proportional to the sum of the dark energy density and the third fluid density, the hypothetical fluid must have positive pressure, which leads naturally to a cosmological scenario with radiation, unparticle or even some form of warm dark matter as the third interacting fluid.  相似文献   

19.
Palash B Pal 《Pramana》1999,53(6):1053-1059
I discuss some compelling suggestions about particles which could be the dark matter in the Universe, with special attention to experimental searches for them.  相似文献   

20.
The universe content is considered as a non-perfect fluid with bulk viscosity and can be described by a general equation of state (endowed some deviation from the conventionally assumed cosmic perfect fluid model). An explicitly bulk viscosity dark energy model is proposed to confront consistently with the current observationaldata sets by statistical analysis and is shown consistent with (not deviated away much from) the concordant Λ Cold Dark Matter (CDM) model by comparing the decelerating parameter. Also we compare our relatively simple viscosity dark energy model with a more complicated one by contrast with the concordant ΛCDM modeland find our model improves for the viscosity dark energy model building. Finally we discuss the perspectives of dark energy probes for the coming years with observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号