首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We studied biomembrane adhesion using the micropipet aspiration technique. Adhesion was caused by contact site A, a laterally mobile and highly specific cell adhesion molecule from Dictyostelium discoideum, reconstituted in lipid vesicles of DOPC (L-α-dioleoylphosphatidylcholine) with an addition of 5 mol % DOPE-PEG2000 (1,2-diacyl-sn-glycero-3-phosphatidylethanolamine-N-[poly(ethyleneglycol) 2000]). The “fuzzy” membrane mimics the cellular plasma membrane including the glycocalyx. We found adhesion and subsequent receptor migration into the contact zone. Using membrane tension jumps to probe the equation of state of the two-dimensional “gas” of bound receptor pairs within the contact zone, we found strong, attractive lateral interactions. Received 16 February 2001  相似文献   

3.
Using Monte Carlo simulations, we study the counterion distribution close to planar charged walls in two geometries: i) when only one charged wall is present and the counterions are confined to one half-space, and ii) when the counterions are confined between two equally charged walls. In both cases the surface charge is smeared out and the dielectric constant is the same everywhere. We obtain the counterion density profile and compare it with both the Poisson-Boltzmann theory (asymptotically exact in the limit of weak coupling, i.e. low surface charge, high temperature and low counterion valence) and the strong-coupling theory (valid in the opposite limit of high surface charge, low temperature and high counterion valence) and with previously calculated correction terms to both theories for different values of the coupling parameter, thereby establishing the domain of validity of the asymptotic limits. Gaussian corrections to the leading Poisson-Boltzmann behavior (obtained via a systematic loop expansion) in general perform quite poorly: At coupling strengths low enough so that the Gaussian (or one-loop) correction does describe the numerical deviations from the Poisson-Boltzmann result correctly, the leading Poisson-Boltzmann term by itself matches the data within high accuracy. This reflects the slow convergence of the loop expansion. For a single charged plane, the counterion pair correlation function indicates a behavioral change from a three-dimensional, weakly correlated counterion distribution (at low coupling) to a two-dimensional, strongly correlated counterion distribution (at high coupling), which is paralleled by the specific-heat capacity which displays a rounded hump at intermediate coupling strengths. For the case of counterions confined between two equally charged walls, we analyze the inter-wall pressure and establish the complete phase diagram, featuring attraction between the walls for large enough coupling strength and at intermediate wall separation. Depending on the thermodynamic ensemble, the phase diagram exhibits a discontinuous transition where the inter-wall distance jumps to infinity (in the absence of a chemical potential coupling to the inter-wall distance, as for charged lamellae in excess solvent) or a critical point where two coexisting states with different inter-wall distance become indistinguishable (in the presence of a chemical potential, as for charged lamellae with a finite fixed solvent fraction). The attractive pressure decays with the inter-wall distance as an inverse cube, similar to analytic predictions, although the amplitude differs by an order of magnitude from previous theoretical results. Finally, we discuss in detail our simulation methods and compare the finite-size scaling behavior of different boundary conditions (periodic, minimal image and open). Received 6 November 2001  相似文献   

4.
Charged monolayers at a liquid-vapor interface may be found in a crystalline state, resulting in a surface density of charge that displays periodic modulations. In this paper we discuss how these modulations affect different thermodynamical and mechanical properties (compared with the equivalent uniform charge density) of a system consisting of the charged monolayer and a bulk solution including a finite concentration of counter-ions and co-ions. It is shown that very accurate results for low and moderate salt concentrations are possible within an expansion in the Fourier modes of the modulations, the Weak Amplitude Perturbation (WAP), if the finite size of the ions are included as a Stern layer. We conclude by discussing the implications and the relevance of these results for both theoretical studies and experiments.  相似文献   

5.
Anomalous small angle X-ray scattering experiments show that before demixion in sodium polyacrylate/cobalt and sodium polyacrylate/calcium mixtures all the divalent counterions are in the close vicinity of the polyacrylate chain. The present results are consistent with previous UV/VIS spectroscopy, which have shown that all cobalt ions are chemically associated with acrylate groups. The chemical association dehydrates the acrylate monomers. However, the hydrophobicity of the complexed monomers is not strong enough to induce a collapse of the polymer chain at small spatial scale before the demixion. Indeed, the scattered intensity (X-ray and neutron scattering) decreases with the scattering vector q as q-x with for q > 0.1 nm -1 which indicates that the local conformation of the chain is Gaussian. Received 21 January 1999  相似文献   

6.
We present a simple model for the possible mechanism of appearance of attraction between like charged polyions inside a polyelectrolyte solution. The attraction is found to be short ranged, and exists only in the presence of multivalent counterions. It is produced by the correlations in layers of condensed counterions surrounding each polyion and is only weakly temperature dependent. We find the attraction to be maximum at zero temperature and dimish as the temperature is raised. The attraction is only possible if the number of condensed counterions exceeds the threshold, , where is the valence of counterions and Z is the polyion charge. Received 10 March 1999 and Received in final form 20 April 1999  相似文献   

7.
We consider a model of a macro-ion surrounded by small ions of an electrolyte solution. The finite size of ionic charge distributions of ions, and image charge effects are considered. From such a model it is possible to construct a statistical field theory with a single fluctuating field and derive physical interpretations for both the mean field and two-point correlation function. For point-like charges, at the level of a Gaussian (or saddle point) approximation, we recover the standard Poisson-Boltzmann equation. However, to include ionic correlation effects, as well as image charge effects of individual ions, we must go beyond this. From the field theory considered, it is possible to construct self-consistent approximations. We consider the simplest of these, namely the Hartree approximation. The Hartree equations take the form of two coupled equations. One is a modified Poisson-Boltzmann equation; the other describes both image charge effects on the individual ions, as well as correlations. Such equations are difficult to solve numerically, so we develop an (a WKB-like) approximation for obtaining approximate solutions. This, we apply to a uniformly charged rod in univalent electrolyte solution, for point like ions, as well as for extended spherically symmetric distributions of ionic charge on electrolyte ions. The solutions show how correlation effects and image charge effects modify the Poisson-Boltzmann result. Finite-size charge distributions of the ions reduce both the effects of correlations and image charge effects. For point charges, we test the WKB approximation by calculating a leading-order correction from the exact Hartree result, showing that the WKB-like approximation works reasonably well in describing the full solution to the Hartree equations. From these solutions, we also calculate an effective charge compensation parameter in an analytical formula for the interaction of two charged cylinders. Electronic supplementary material  Supplementary material in the form of a doc file available from the journal web page at and are accessible for authorised users.  相似文献   

8.
The effect of fixed discrete colloidal charges in the primitive model is investigated for spherical macroions. Instead of considering a central bare charge, as it is traditionally done, we distribute discrete charges randomly on the sphere. We use molecular dynamics simulations to study this effect on various properties such as overcharging, counterion distribution and diffusion. In the vicinity of the colloid surface the electrostatic potential may considerably differ from the one obtained with a central charge. In the strong Coulomb coupling, we showed that the colloidal charge discretization qualitatively influences the counterion distribution and leads to a strong colloidal charge-counterion pair association. However, we found that charge inversion still persists even if strong pair association is observed. Received 30 June 2000 and Received in final form 28 November 2000  相似文献   

9.
We formulate the exact non-linear field theory for a fluctuating counter-ion distribution in the presence of a fixed, arbitrary charge distribution. The Poisson-Boltzmann equation is obtained as the saddle-point of the field-theoretic action, and the effects of counter-ion fluctuations are included by a loop-wise expansion around this saddle point. The Poisson equation is obeyed at each order in this loop expansion. We explicitly give the expansion of the Gibbs potential up to two loops. We then apply our field-theoretic formalism to the case of a single impenetrable wall with counter ions only (in the absence of salt ions). We obtain the fluctuation corrections to the electrostatic potential and the counter-ion density to one-loop order without further approximations. The relative importance of fluctuation corrections is controlled by a single parameter, which is proportional to the cube of the counter-ion valency and to the surface charge density. The effective interactions and correlation functions between charged particles close to the charged wall are obtained on the one-loop level. Received 8 February 1999 and Received in final form 15 May 1999  相似文献   

10.
We study the phase behavior of solutions consisting of positive and negative ions of valence z to which a third ionic species of valence Z>z is added. Using a discretized Debye-Hückel theory, we analyze the phase behavior of such systems for different values of the ratio . We find, for , a three-phase coexistence region and, for , a closed (reentrant) coexistence loop at high temperatures. We characterize the behavior of these ternary ionic mixtures as function of charge asymmetry and temperature, and show the complete phase diagrams for the experimentally relevant cases of and , corresponding to addition of divalent and trivalent ions to monovalent ionic fluids, respectively. Received 6 April 2000 and Received in final form 20 July 2000  相似文献   

11.
Single- and double-stranded DNA and many biological and synthetic polyelectrolytes undergo two structural transitions upon increasing the concentration of multivalent salt or molecules. First, the expanded-stretched chains in low monovalent salt solutions collapse into nearly neutral compact structures when the density of multivalent salt approaches that of the monomers. With further addition of multivalent salt the chains redissolve acquiring expanded-coiled conformations. We study the redissolution transition using a two-state model (F.J. Solis, M. Olvera de la Cruz, J. Chem. Phys. 112, 2030 (2000)). The redissolution occurs when there is a high degree of screening of the electrostatic interactions between monomers, thus reducing the energy of the expanded state. The transition is determined by the chemical potential of the multivalent ions in the solution, μ and the inverse screening length, κ. The transition point also depends on the charge distribution along the chain but is nearly independent of the molecular weight and degree of flexibility of the polyelectrolytes. We generate a diagram of μversusκ2 where we find two regions of expanded conformations, one with charged chains and the other with overcharged (inverted charge) chains, separated by a collapsed nearly neutral conformation region. The collapse and redissolution transitions occur when the trajectory of the properties of the salt crosses the boundaries between these regions. We find that in most cases the redissolution occurs within the same expanded branch from which the chain precipitates. Received 15 May 2000 and Received in final form 28 June 2000  相似文献   

12.
The interplay of interactions between micelles, and the aggregation of these micelles into large, highly anisotropic micelles, is studied. Simple, hard-body, models of rod-like and disc-like micelles are used, which allows us to apply fundamental measure theory to determine the free energy. Then we study the phase transition from the fluid phase to a liquid crystalline phase. We find that aggregation induces a strongly first order transition from a fluid phase of small micelles to a close packed liquid crystalline phase of infinitely large micelles. Received: 3 December 1997  相似文献   

13.
Highly oriented solid-supported lipid membranes in stacks of controlled number N ≃ 16 (oligo-membranes) have been prepared by spin-coating using the uncharged lipid model system 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). The samples have been immersed in aqueous polymer solutions for control of osmotic pressure and have been studied by X-ray reflectivity. The bilayer structure and fluctuations have been determined by modelling the data over the full q-range. Thermal fluctuations are described using the continuous smectic Hamiltonian with the appropriate boundary conditions at the substrate and at the free surface of the stack. The resulting fluctuation amplitudes and the pressure-distance relation are discussed in view of the inter-bilayer potential.  相似文献   

14.
Using a field-theoretic approach, we derive the first few coefficients of the exact low-density (“virial”) expansion of a binary mixture of positively and negatively charged hard spheres (two-component hard-core plasma, TCPHC). Our calculations are nonperturbative with respect to the diameters d+ and d- and charge valences q+ and q- of positive and negative ions. Consequently, our closed-form expressions for the coefficients of the free energy and activity can be used to treat dilute salt solutions, where typically d +d - and q +q -, as well as colloidal suspensions, where the difference in size and valence between macroions and counterions can be very large. We show how to map the TCPHC on a one-component hard-core plasma (OCPHC) in the colloidal limit of large size and valence ratio, in which case the counterions effectively form a neutralizing background. A sizable discrepancy with the standard OCPHC with uniform, rigid background is detected, which can be traced back to the fact that the counterions cannot penetrate the colloids. For the case of electrolyte solutions, we show how to obtain the cationic and anionic radii as independent parameters from experimental data for the activity coefficient. Received 6 September 2001 / Received in final form 20 May 2002 Published online 24 September 2002  相似文献   

15.
Using a field-theoretic formalism, we calculate the static contribution to the van der Waals interaction between two dielectric semi-infinite half-spaces in the presence of mobile salt ions. The ions can be located in the slab, in one, or in both half-spaces. We include an excess polarizability of the salt ions, i.e., each (spherical) ion has a dielectric constant which in general is different from the surrounding medium. This leads to a modification of the effective dielectric constant of the medium hosting the ions. This shift can be large for high salt concentrations and therefore influences the Hamaker constant decisively. Salt ions in the slab screen the static van der Waals interaction, as was shown by Davies and Ninham. The salt-modified van der Waals interaction also contains salt-confinement and salt-correlation effects. This is clearly demonstrated by the fact that the interaction is non-zero even in the case when the dielectric constant is homogeneous throughout the system, in which case salt correlations are solely responsible for the interaction. If the salt ions are in one or both of the two half-spaces (and no ions in the slab), the van der Waals interaction is not screened but the effective Hamaker constant approaches a universal value for large slab thickness which is different from the value in the absence of salt ions and which is independent of the salt concentration and of the effective electrolyte dielectric constant. If both half-spaces contain salt, the asymptotic value of the Hamaker constant for large separation between the half-spaces is the one obtained for the interaction between two metallic half-spaces through an arbitrary dielectric medium, which is given by A≃ - 1.20. As is explicitly demonstrated, ion enrichment or depletion at the interfaces due to image-charge effects is already included on the one-loop level and therefore does not lead to a change of the screened van der Waals interaction as given by Davies and Ninham. For positive and negative ions with different valencies or different excess polarizabilities, we obtain different adsorbed surface excesses of positive and negative ions, leading to a non-vanishing surface potential, which is computed explicitly. All of these results are obtained on the linear one-loop level. For a special case we extend the calculation of the dispersion interaction to the two-loop level. We find the corrections to the one-loop results to be quite large for high salt concentrations or multivalent ions. Received 17 February 2000  相似文献   

16.
Studies performed on strong polyelectrolytes and on a weak polyelectrolyte, sodium poly(acrylate), show that their stability in presence of multivalent cations depends on the chemical nature of the charged side groups of the polymer. For sulfonate groups (SO3 -) or sulfate groups (OSO3 -) phase separation generally occurs in presence of inorganic cations of valency 3 (as La3+) or larger and a resolubilization takes place at high salt concentration. The interactions of the polyelectrolyte with multivalent cations are of electrostatic origin and the phase diagrams are weakly dependent on the chemical nature of the polymer backbone and on the specificity of the counterions. For acrylate groups, (COO-), the phase separation was observed with inorganic cations of valency 2 (as Ca2+) or larger without resolubilization at high salt concentration. The phase separation is due to a chemical association between cations and acrylate groups of two neighboring monomers of the same chain. This chemical association creates a hydrophobic complex by dehydrating both monomer and cation. With organic trivalent cation, as spermidine +H3N(CH2)4NH2 +(CH2)3NH3 +, where no chemical association occurs with the charged side groups COO- or SO3 - of the polyelectrolyte, similar phase diagrams were observed whatever was the polyelectrolyte with a resolubilization at high trivalent cation concentration. Received 3 March 1999 and Received in final form 2 September 1999  相似文献   

17.
Aqueous micellar solutions of ionic/neutral block copolymers have been studied by light scattering, small angle neutron scattering and small angle X-ray scattering. We made use of a polymer comprised of a short hydrophobic block (polyethylene-propylene) PEP and of a long polyelectrolytic block (polystyrene-sulfonate) PSSNa which has been shown previously to micellize in water. The apparent polydispersity of these micelles is studied in detail, showing the existence of a few large aggregates coexisting with the population of micelles. Solutions of micelles are found to order above some threshold in polymer concentration. The order is liquid-like, as demonstrated by the evolution with concentration of the peak observed in the structure factor (), and the degree of order is found to be identical over a large range of concentrations (up to 20 wt%). Consistent values of the aggregation number of the micelles are found by independent methods. The effect of salt addition on the order is found to be weak. Received: 19 June 1997 / Received in final form: 4 September 1997 / Accepted: 9 October 1997  相似文献   

18.
We investigate polyelectrolyte brushes using both scaling arguments and molecular dynamics simulations. As a main result, we find a novel collapsed brush phase. In this phase, the height of the brush results from a competition between steric repulsion between ions and monomers and an attractive force due to electrostatic correlations. As a result, the monomer density inside the brush is independent of the grafting density and the polymerization index. For small ionic and monomer radii (or for large Bjerrum length) the brush undergoes a first-order phase transition from the osmotic into the collapsed state. Received 26 September 2000  相似文献   

19.
Nambu-Goto model is investigated by using the canonical Monte Carlo simulation technique on dynamically triangulated surfaces of spherical topology. We find that the model has four distinct phases; crumpled, branched-polymer, linear, and tubular. The linear phase and the tubular phase appear to be separated by a first-order transition. It is also found that there is no long-range two-dimensional order in the model. In fact, no smooth surface can be seen in the whole region of the curvature modulus α, which is the coefficient of the deficit angle term in the Hamiltonian. The bending energy, which is not included in the Hamiltonian, remains large even at sufficiently large α in the tubular phase. On the other hand, the surface is spontaneously compactified into a one-dimensional smooth curve in the linear phase; one of the two degrees of freedom shrinks, and the other degree of freedom remains along the curve. Moreover, we find that the rotational symmetry of the model is spontaneously broken in the tubular phase just as in the same model on the fixed connectivity surfaces.  相似文献   

20.
A first-order phase transition is found in two types of intrinsic curvature models defined on dynamically triangulated surfaces of disk topology. The intrinsic curvature energy is included in the Hamiltonian. The smooth phase is separated from a non-smooth phase by the transition. The crumpled phase, which is different from the non-smooth phase, also appears at sufficiently small curvature coefficient α. The phase structure of the model on the disk is identical to that of the spherical surface model, which was investigated by us and reported previously. Thus, we found that the phase structure of the fluid surface model with intrinsic curvature is independent of whether the surface is closed or open.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号