首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Underwater audiograms are available for only a few odontocete species. A false killer whale (Pseudorca crassidens) was trained at Sea Life Park in Oahu, Hawaii for an underwater hearing test using a go/no-go response paradigm. Over a 6-month period, auditory thresholds from 2-115 kHz were measured using an up/down staircase psychometric technique. The resulting audiogram showed hearing sensitivities below 64 kHz similar to those of belugas (Delphinapterus leucas) and Atlantic bottlenosed dolphins (Tursiops truncatus). Above 64 kHz, this Pseudorca had a rapid decrease in sensitivity of about 150 dB per octave. A similar decrease in sensitivity occurs at 32 kHz in the killer whale, at 50 kHz in the Amazon River dolphin, at 120 kHz in the beluga, at 140 kHz in the bottlenosed dolphin, and at 140 kHz in the harbor porpoise. The most sensitive range of hearing was from 16-64 kHz (a range of 10 dB from the maximum sensitivity). This range corresponds with the peak frequency of echolocation pulses recorded from captive Pseudorca.  相似文献   

2.
Auditory brainstem response (ABR) and standard behavioral methods were compared by measuring in-air audiograms for an adult female harbor seal (Phoca vitulina). Behavioral audiograms were obtained using two techniques: the method of constant stimuli and the staircase method. Sensitivity was tested from 0.250 to 30 kHz. The seal showed good sensitivity from 6 to 12 kHz [best sensitivity 8.1 dB (re 20 microPa2 x s) RMS at 8 kHz]. The staircase method yielded thresholds that were lower by 10 dB on average than the method of constant stimuli. ABRs were recorded at 2, 4, 8, 16, and 22 kHz and showed a similar best range (8-16 kHz). ABR thresholds averaged 5.7 dB higher than behavioral thresholds at 2, 4, and 8 kHz. ABRs were at least 7 dB lower at 16 kHz, and approximately 3 dB higher at 22 kHz. The better sensitivity of ABRs at higher frequencies could have reflected differences in the seal's behavior during ABR testing and/or bandwidth characteristics of test stimuli. These results agree with comparisons of ABR and behavioral methods performed in other recent studies and indicate that ABR methods represent a good alternative for estimating hearing range and sensitivity in pinnipeds, particularly when time is a critical factor and animals are untrained.  相似文献   

3.
Fish-eating "resident"-type killer whales (Orcinus orca) that frequent the coastal waters off northeastern Vancouver Island, Canada have a strong preference for chinook salmon (Oncorhynchus tshawytscha). The whales in this region often forage along steep cliffs that extend into the water, echolocating their prey. Echolocation signals of resident killer whales were measured with a four-hydrophone symmetrical star array and the signals were simultaneously digitized at a sample rate of 500 kHz using a lunch-box PC. A portable VCR recorded the images from an underwater camera located adjacent to the array center. Only signals emanating from close to the beam axis (1185 total) were chosen for a detailed analysis. Killer whales project very broadband echolocation signals (Q equal 0.9 to 1.4) that tend to have bimodal frequency structure. Ninety-seven percent of the signals had center frequencies between 45 and 80 kHz with bandwidths between 35 and 50 kHz. The peak-to-peak source level of the echolocation signals decreased as a function of the one-way transmission loss to the array. Source levels varied between 195 and 224 dB re: 1 microPa. Using a model of target strength for chinook salmon, the echo levels from the echolocation signals are estimated for different horizontal ranges between a whale and a salmon. At a horizontal range of 100 m, the echo level should exceed an Orcinus hearing threshold at 50 kHz by over 29 dB and should be greater than sea state 4 noise by at least 9 dB. In moderately heavy rain conditions, the detection range will be reduced substantially and the echo level at a horizontal range of 40 m would be close to the level of the rain noise.  相似文献   

4.
The hearing sensitivities of two short-finned pilot whales (Globicephala macrorhynchus) were investigated by measuring auditory evoked potentials generated in response to clicks and sinusoidal amplitude modulated (SAM) tones. The first whale tested, an adult female, was a long-time resident at SeaWorld San Diego with a known health history. Click-evoked responses in this animal were similar to those measured in other echolocating odontocetes. Auditory thresholds were comparable to dolphins of similar age determined with similar evoked potential methods. The region of best sensitivity was near 40 kHz and the upper limit of functional hearing was between 80 and 100 kHz. The second whale tested, a juvenile male, was recently stranded and deemed non-releasable. Click-evoked potentials were not detected in this animal and testing with SAM tones suggested severe hearing loss above 10 kHz.  相似文献   

5.
The acoustic repertoire of killer whales (Orcinus orca) consists of pulsed calls and tonal sounds, called whistles. Although previous studies gave information on whistle parameters, no study has presented a detailed quantitative characterization of whistles from wild killer whales. Thus an interpretation of possible functions of whistles in killer whale underwater communication has been impossible so far. In this study acoustic parameters of whistles from groups of individually known killer whales were measured. Observations in the field indicate that whistles are close-range signals. The majority of whistles (90%) were tones with several harmonics with the main energy concentrated in the fundamental. The remainder were tones with enhanced second or higher harmonics and tones without harmonics. Whistles had an average bandwidth of 4.5 kHz, an average dominant frequency of 8.3 kHz, and an average duration of 1.8 s. The number of frequency modulations per whistle ranged between 0 and 71. The study indicates that whistles in wild killer whales serve a different function than whistles of other delphinids. Their structure makes whistles of killer whales suitable to function as close-range motivational sounds.  相似文献   

6.
In this report we present the first behavioral measurements of auditory sensitivity for Pollimyrus adspersus. Pollimyrus is an electric fish (Mormyridae) that uses both electric and acoustic signals for communication. Tone detection was assessed from the fish's electric organ discharge rate. Suprathreshold tones usually evoked an accelerated rate in naive animals. This response (rate modulation > or =25%) was maintained in a classical conditioning paradigm by presenting a weak electric current near the offset of 3.5-s tone bursts. An adaptive staircase procedure was used to find detection thresholds at frequencies between 100 and 1700 Hz. The mean audiogram from six individuals revealed high sensitivity in the 200-900 Hz range, with the best thresholds near 500 Hz (66.5+/-4.2 SE dB re: 1 microPa). Sensitivity declined slowly (about 20 dB/octave) above and below this sensitivity maximum. Sensitivity fell off rapidly above 1 kHz (about 60 dB/octave) and no responses were observed at 5 kHz. This behavioral sensitivity matched closely the spectral content of the sounds that this species produced during courtship. Experiments with click trains showed that sensitivity (about 83-dB peak) was independent of inter-click-interval, within the 10-100 ms range.  相似文献   

7.
Behavioral and auditory evoked potential (AEP) audiograms of a false killer whale were measured using the same subject and experimental conditions. The objective was to compare and assess the correspondence of auditory thresholds collected by behavioral and electrophysiological techniques. Behavioral audiograms used 3-s pure-tone stimuli from 4 to 45 kHz, and were conducted with a go/no-go modified staircase procedure. AEP audiograms used 20-ms sinusoidally amplitude-modulated tone bursts from 4 to 45 kHz, and the electrophysiological responses were received through gold disc electrodes in rubber suction cups. The behavioral data were reliable and repeatable, with the region of best sensitivity between 16 and 24 kHz and peak sensitivity at 20 kHz. The AEP audiograms produced thresholds that were also consistent over time, with range of best sensitivity from 16 to 22.5 kHz and peak sensitivity at 22.5 kHz. Behavioral thresholds were always lower than AEP thresholds. However, AEP audiograms were completed in a shorter amount of time with minimum participation from the animal. These data indicated that behavioral and AEP techniques can be used successfully and interchangeably to measure cetacean hearing sensitivity.  相似文献   

8.
Rabbits were exposed to 2- to 7-kHz noise either for a short duration at a high sound-pressure level (15 or 30 min at 115 dB SPL), or a long duration at a low level (512 h at 85 dB SPL). The high-level exposure produced a hearing loss in the frequency range 2-6 kHz, whereas the low-level exposure gave maximum hearing loss at 12-20 kHz. The 115-dB exposure caused significantly more damage to inner hair cells than the 85-dB exposure. The implications of the present results for evaluating audiograms, equal-energy hypothesis, risk criteria, and subjective auditory features are pointed out.  相似文献   

9.
Devices known as jawphones have previously been used to measure interaural time and intensity discrimination in dolphins. This study introduces their use for measuring hearing sensitivity in dolphins. Auditory thresholds were measured behaviorally against natural background noise for two bottlenose dolphins (Tursiops truncatus); a 14-year-old female and a 33-year-old male. Stimuli were delivered to each ear independently by placing jawphones directly over the pan bone of the dolphin's lower jaw, the assumed site of best reception. The shape of the female dolphin's auditory functions, including comparison measurements made in the free field, favorably matches that of the accepted standard audiogram for the species. Thresholds previously measured for the male dolphin at 26 years of age indicated a sensitivity difference between the ears of 2-3 dB between 4-10 kHz, which was considered unremarkable at the time. Thresholds for the male dolphin reported in this study suggest a high-frequency loss compared to the standard audiogram. Both of the male's ears have lost sensitivity to frequencies above 55 kHz and the right ear is 16-33 dB less sensitive than the left ear over the 10-40 kHz range, suggesting that males of the species may lose sensitivity as a function of age. The results of this study support the use of jawphones for the measurement of dolphin auditory sensitivity.  相似文献   

10.
The audiograms of three Japanese macaques and seven humans were determined in a free-field environment using loudspeakers. The monkeys and humans were tested using tones ranging from 8 Hz to 40 kHz and 4 Hz to 22.4 kHz, respectively. At a level of 60 dB sound pressure level the monkeys were able to hear tones extending from 28 Hz to 37 kHz with their best sensitivity of 1 dB occurring at 4 kHz. The human 60-dB hearing range extended from 31 Hz to 17.6 kHz with a best sensitivity of -10 dB at 2 and 4 kHz. These results indicate that the Japanese macaque has low-frequency hearing equal to that of humans and better than that indicated by previous audiograms obtained using headphones.  相似文献   

11.
The influence of middle-ear muscle (MEM) contraction on auditory threshold has been measured for pure tones of 0.25, 0.5, and 1.5 kHz. The reflex-activating signal was a 3-kHz pure tone. Signal paradigms were chosen to reduce or eliminate the effects of binaural loudness summation, contralateral direct masking, and contralateral remote and backward masking effects, and to maximize the influence of MEM contraction. Results indicate that under no condition was behavioral threshold affected by the MEM contraction induced using a pure-tone stimulus of 3 kHz, 105 dB SPL.  相似文献   

12.
Auditory feedback influences the development of vocalizations in songbirds and parrots; however, little is known about the development of hearing in these birds. The auditory brainstem response was used to track the development of auditory sensitivity in budgerigars from hatch to 6 weeks of age. Responses were first obtained from 1-week-old at high stimulation levels at frequencies at or below 2 kHz, showing that budgerigars do not hear well at hatch. Over the next week, thresholds improved markedly, and responses were obtained for almost all test frequencies throughout the range of hearing by 14 days. By 3 weeks posthatch, birds' best sensitivity shifted from 2 to 2.86 kHz, and the shape of the auditory brainstem response (ABR) audiogram became similar to that of adult budgerigars. About a week before leaving the nest, ABR audiograms of young budgerigars are very similar to those of adult birds. These data complement what is known about vocal development in budgerigars and show that hearing is fully developed by the time that vocal learning begins.  相似文献   

13.
The auditory brainstem response (ABR), a measure of neural synchrony, was used to estimate auditory sensitivity in the eastern screech owl (Megascops asio). The typical screech owl ABR waveform showed two to three prominent peaks occurring within 5 ms of stimulus onset. As sound pressure levels increased, the ABR peak amplitude increased and latency decreased. With an increasing stimulus presentation rate, ABR peak amplitude decreased and latency increased. Generally, changes in the ABR waveform to stimulus intensity and repetition rate are consistent with the pattern found in several avian families. The ABR audiogram shows that screech owls hear best between 1.5 and 6.4 kHz with the most acute sensitivity between 4-5.7 kHz. The shape of the average screech owl ABR audiogram is similar to the shape of the behaviorally measured audiogram of the barn owl, except at the highest frequencies. Our data also show differences in overall auditory sensitivity between the color morphs of screech owls.  相似文献   

14.
The underwater hearing sensitivity of a two-year-old harbor porpoise was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using narrow-band frequency-modulated signals having center frequencies between 250 Hz and 180 kHz. The resulting audiogram was U-shaped with the range of best hearing (defined as 10 dB within maximum sensitivity) from 16 to 140 kHz, with a reduced sensitivity around 64 kHz. Maximum sensitivity (about 33 dB re 1 microPa) occurred between 100 and 140 kHz. This maximum sensitivity range corresponds with the peak frequency of echolocation pulses produced by harbor porpoises (120-130 kHz). Sensitivity falls about 10 dB per octave below 16 kHz and falls off sharply above 140 kHz (260 dB per octave). Compared to a previous audiogram of this species (Andersen, 1970), the present audiogram shows less sensitive hearing between 2 and 8 kHz and more sensitive hearing between 16 and 180 kHz. This harbor porpoise has the highest upper-frequency limit of all odontocetes investigated. The time it took for the porpoise to move its head 22 cm after the signal onset (movement time) was also measured. It increased from about 1 s at 10 dB above threshold, to about 1.5 s at threshold.  相似文献   

15.
The purpose of this study was to determine how closely the auditory brainstem response (ABR) can estimate sensorineural threshold shifts in rats exposed to loud sound. Behavioral and ABR thresholds were obtained for tones or noise before and after exposure to loud sound. The results showed that the ABR threshold shift obtained with tone pips estimated the initial pure-tone threshold shifts to within +/-5 dB 11% of the time and the permanent pure-tone threshold shifts 55% of the time, both with large errors. Determining behavioral thresholds for the same tone pips used for the ABR did not improve the agreement between the measures. In contrast, the ABR obtained with octave noise estimated the initial threshold shifts for that noise to within +/-5 dB 25% of the time and the permanent threshold shifts 89% of the time, with much smaller errors. Thus, it appears that the noise-evoked ABR is more accurate in estimating threshold shift than the tone-evoked ABR.  相似文献   

16.
Hearing sensitivity was measured in a bottlenose dolphin before and after exposure to an intense 20-kHz fatiguing tone in three different experiments. In each experiment, hearing was characterized using both the auditory steady-state response (ASSR) and behavioral methods. In experiments 1 and 2, ASSR stimuli consisted of seven frequency-modulated tones, each with a unique carrier and modulation frequency. The tones were simultaneously presented to the subject and the ASSR at each modulation rate measured to determine the effects of the sound exposure at the corresponding carrier frequency. In experiment 3 behavioral thresholds and ASSR input-output functions were measured at a single frequency before and after three exposures. Hearing loss was frequency-dependent, with the largest temporary threshold shifts occurring (in order) at 30, 40, and 20 kHz. ASSR threshold shifts reached 40-45 dB and were always larger than behavioral shifts (19-33 dB). The ASSR input-output functions were represented as the sum of two processes: a low threshold, saturating process and a higher threshold, linear process, that react and recover to fatigue at different rates. The loss of the near-threshold saturating process after exposure may explain the discrepancies between the ASSR and behavioral threshold shifts.  相似文献   

17.
A behavioral response paradigm was used to measure hearing thresholds in bottlenose dolphins before and after exposure to 3 kHz tones with sound exposure levels (SELs) from 100 to 203 dB re 1 microPa2 s. Experiments were conducted in a relatively quiet pool with ambient noise levels below 55 dB re 1 microPa2/Hz at frequencies above 1 kHz. Experiments 1 and 2 featured 1-s exposures with hearing tested at 4.5 and 3 kHz, respectively. Experiment 3 featured 2-, 4-, and 8-s exposures with hearing tested at 4.5 kHz. For experiment 2, there were no significant differences between control and exposure sessions. For experiments 1 and 3, exposures with SEL=197 dB re 1 microPa2 s and SEL > or = 195 dB re 1 microPa2 s, respectively, resulted in significantly higher TTS4 than control sessions. For experiment 3 at SEL= 195 dB re 1 microPa2 s, the mean TTS4 was 2.8 dB. These data are consistent with prior studies of TTS in dolphins exposed to pure tones and octave band noise and suggest that a SEL of 195 dB re 1 microPa2 s is a reasonable threshold for the onset of TTS in dolphins and white whales exposed to midfrequency tones.  相似文献   

18.
The source characteristics of biosonar signals from sympatric killer whales and long-finned pilot whales in a Norwegian fjord were compared. A total of 137 pilot whale and more than 2000 killer whale echolocation clicks were recorded using a linear four-hydrophone array. Of these, 20 pilot whale clicks and 28 killer whale clicks were categorized as being recorded on-axis. The clicks of pilot whales had a mean apparent source level of 196 dB re 1 μPa pp and those of killer whales 203 dB re 1 μPa pp. The duration of pilot whale clicks was significantly shorter (23 μs, S.E.=1.3) and the centroid frequency significantly higher (55 kHz, S.E.=2.1) than killer whale clicks (duration: 41 μs, S.E.=2.6; centroid frequency: 32 kHz, S.E.=1.5). The rate of increase in the accumulated energy as a function of time also differed between clicks from the two species. The differences in duration, frequency, and energy distribution may have a potential to allow for the distinction between pilot and killer whale clicks when using automated detection routines for acoustic monitoring.  相似文献   

19.
Both distortion-product otoacoustic emissions (DPOAEs) and performance in an auditory-masking task involving combination tones were measured in the same frequency region in the same ears. In the behavioral task, a signal of 3.6?kHz (duration 300?ms, rise/fall time 20?ms) was masked by a 3.0-kHz tone (62?dB SPL, continuously presented). These two frequencies can produce a combination tone at 2.4?kHz. When a narrowband noise (2.0-2.8?kHz, 17?dB spectrum level) was added as a second masker, detection of the 3.6-kHz signal worsened by 6-9?dB (the Greenwood effect), revealing that listeners had been using the combination tone at 2.4?kHz as a cue for detection at 3.6?kHz. Several outcomes differed markedly by sex and racial background. The Greenwood effect was substantially larger in females than in males, but only for the White group. When the magnitude of the Greenwood effect was compared with the magnitude of the DPOAE measured in the 2.4?kHz region, the correlations typically were modest, but were high for Non-White males. For many subjects, then, most of the DPOAE measured in the ear canal apparently is not related to the combination-tone cue that is masked by the narrowband noise.  相似文献   

20.
Toneburst-evoked auditory brainstem responses (ABRs) were recorded in a captive subadult male leopard seal. Three frequencies from 1 to 4 kHz were tested at sound levels from 68 to 122 dB peak equivalent sound pressure level (peSPL). Results illustrate brainstem activity within the 1-4 kHz range, with better hearing sensitivity at 4 kHz. As is seen in human ABR, only wave V is reliably identified at the lower stimulus intensities. Wave V is present down to levels of 82 dB peSPL in the right ear and 92 dB peSPL in the left ear at 4 kHz. Further investigations testing a wider frequency range on seals of various sex and age classes are required to conclusively report on the hearing range and sensitivity in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号