首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In this paper, methods are described that are used for studying first-order reaction kinetics by gas chromatography. Basic theory is summarized and illustrated using the interconversion of 1-chloro-2,2-dimethylaziridine enantiomers as a representative example. For the determination of the kinetic and thermodynamic activation data of interconversion the following methods are reviewed: (i) classical kinetic methods where samples of batch-wise kinetic studies are analyzed by enantioselective gas chromatography, (ii) stopped-flow methods performed on one chiral column, (iii) stopped-flow methods performed on an achiral column or empty capillary coupled in series with two chiral columns, (iv) on-flow method performed on an achiral column coupled in series with two chiral columns, and (v) reaction gas chromatography, known as a dynamic gas chromatography, where the interconversion is performed on chiral column during the separation process. The determination of kinetic and thermodynamic activation data by methods (i) through (iv) is straightforward as the experimental data needed for the evaluation (particularly the concentration of reaction constituents) are accessible from the chromatograms. The evaluation of experiments from reaction chromatography method (v) is complex as the concentration bands of reaction constituents are overlapped. The following procedures have been developed to determination peak areas of reaction constituents in such complex chromatograms: (i) methods based on computer-assisted simulations of chromatograms where the kinetic activation parameters for the interconversion of enantiomers are obtained by iterative comparison of experimental and simulated chromatograms, (ii) stochastic methods based on the simulation of Gaussian distribution functions and using a time-dependent probability density function, (iii) approximation function and unified equation, (iv) computer-assisted peak deconvolution methods. Evaluation of the experimental data permits the calculation of apparent rate constants for both the interconversion of the first eluted (k (A-->B)(app)) as well as the second eluted (k(B-->A)(app)) enantiomer. The mean value for all the rate constants (from all the reviewed methods) was found for 1-chloro-2,2-dimethylaziridine A-->B enantiomer interconversion at 100 degrees C: k (A-->B)(app)=21.2 x 10(-4)s(-1) with a standard deviation sigma=10.7 x 10(-4). Evaluating data for reaction chromatography at 100 degrees C {k (app)=k(A-->B)(app)=k(B-->A)(app)=13.9 x 10(-4)s(-1), sigma=3.0 x 10(-4)s(-1)} shows that differences between k(A-->B)(app) and k(B-->A)(app) are the same within experimental error. It was shown both theoretically and experimentally that the Arrhenius activation energy (E(a)) calculated from Arrhenius plots (lnk(app) versus 1/T) is proportional to the enthalpy of activation {E(a)=DeltaH+RT}. Statistical treatment of Gibbs activation energy values gave: DeltaG (app)=110.5kJmol(-1), sigma=2.4kJmol(-1), DeltaG (A-->B)(app)=110.5kJmol(-1), sigma=2.2kJmol(-1), DeltaG (B-->A)(app)=110.3kJmol(-1), sigma=2.8kJmol(-1). This shows that the apparent Gibbs energy barriers for the interconversion of 1-chloro-2,2-dimethylaziridine enantiomers are equal DeltaG (app)=DeltaG(A-->B)(app)=DeltaG(B-->A)(app) and within the given precision of measurement independent of the experimental method used.  相似文献   

2.
Enantioselective stopped-flow multidimensional gas chromatography (stopped-flow MDGC) is a fast and simple technique to determine enantiomerization (inversion) barriers in the gas phase in a range of delta G#gas(T)=70-200 kJ mol(-1). After complete gas-chromatographic separation of the enantiomers in the first column, gas phase enantiomerization of the heart-cut fraction of one single enantiomer is performed in the second (reactor) column at increased temperature and afterwards this fraction is separated into the enantiomers in the third column. From the observed de novo enantiomeric peak areas a(j), the enantiomerization time t and the enantiomerization temperature T, the enantiomerization (inversion) barrier delta G#gas(T) is determined and from temperature-dependent experiments, the activation enthalpy delta H#gas and the activation entropy delta S#gas are obtained. Enantiomerization studies on chiral 1-chloro-2,2-dimethylaziridine by stopped-flow MDGC yielded activation parameters of nitrogen inversion in the gas phase, i.e., delta G#gas(353 K)=110.5+/-0.5 kJ mol(-1), delta H#gas=71.0+/-3.8 kJ mol(-1) and delta S#gas=-109+/-11 J mol(-1) K(-1). By the complementary method of dynamic gas chromatography (GC), the apparent enantiomerization (inversion) barrier of 1-chloro-2,2-dimethylaziridine in the gas-liquid biphase system was found delta G#app(353 K)=108 kJ mol(-1). The values obtained by stopped-flow MDGC in the gas phase were used to calculate the activation parameters of nitrogen inversion of 1-chloro-2,2-dimethylaziridine in the liquid phase in the presence of the chiral selector Chirasil-nickel(II), i.e.. deltaG#liq(353 K)=106.0+/-0.4 kJ mol(-1), delta H#liq=68.3+/-1.4 kJ mol(-1) and deltaS#liq=-106+/-3.0 J mol(-1) K(-1).  相似文献   

3.
The enantiomers of dialkyl 2,3-pentadienedioate undergo interconversion during gas chromatographic separation on chiral stationary phases. In this paper the on-column apparent interconversion kinetic and thermodynamic activation data were determined for dimethyl, diethyl, propylbutyl and dibutyl 2,3-pentadienedioate enantiomers by gas chromatographic separation of the racemic mixtures on a capillary column containing a polydimethylsiloxane stationary phase coupled to 2,3-di-O-methyl-6-O-tertbutyldimethylsilyl-beta-cyclodextrin. A deconvolution method was used to determine the individual enantiomer peak areas and retention times that are needed to calculate the interconversion rate constants and the energy barriers. The apparent rate constants and interconversion energy barriers decrease slightly with an increase in the alkyl chain length of the dialkyl 2,3-pentadienedioate esters. The optimum conformation of the dialkyl 2,3-pentadienedioate molecules, their separation selectivity factors and apparent interconversion enthalpy and entropy data changes with the alkyl chain length. The dependence of the apparent interconversion energy barrier (deltaG(app)(a-->b), deltaG(app)(b-->a)) on temperature was used to determine the apparent activation enthalpy (deltaH(app)(a-->b), deltaH(app)(b-->a)) and apparent entropy (deltaS(app)(a-->b), deltaS(app)(a-->b)) (where a denotes the first and b second eluted enantiomer). The comparison of the activation enthalpy and entropy (deltaS(app)(a-->b), deltaS(app)(a-->b)) indicated that the interconversion of dialkyl 2,3-pentadienedioate enantiomers on the HP-5+Chiraldex B-DM column series is an entropy driven process at 160 degrees C. Data obtained for dimethyl 2,3-pentadienedioate enantiomers on the HP-5+Chiraldex B-DM column series at 120 degrees C (deltaG(app)(a-->b) = 123.3 and deltaG(app)(b-->a) = 124.4 kJ mol(-1)) corresponds (at the 95% confidence interval) with the value of deltaG(#) = 128+/-1 kJ mol(-1) found at this temperature by gas chromatography using a two-dimensional stop flow technique on an empty capillary column [V. Schurig, F. Keller, S. Reich, M. Fluck, Tetrahedron: Asymmetry 8 (1997) 3475].  相似文献   

4.
The enantiomers of dimethyl-2,3-pentadienedioate undergo interconversion during gas chromatographic separation on 2,6-di-O-methyl-3-O-pentyl-beta-, 2,6-di-O-methyl-3-O-pentyl-gamma-, and 2,3-di-O-methyl-6-O-tert butyldimethylsilyl-beta-CD chiral stationary phases. The combination of a deconvolution method with an internal standard was used to determine individual enantiomer peak areas and retention times needed for the calculation of the interconversion rate constants and the energy barrier for dimethyl-2,3-pentadienedioate enantiomers. The kinetic and thermodynamic data obtained for the interconversion data (rate constants, energy barriers, enthalpies, and entropies) were in good agreement with the published data (Trapp, O., Schurig, V., Chirality 2002, 14, 465-470) using permethylated-beta-CD (Chirasil-beta-Dex).  相似文献   

5.
《Tetrahedron: Asymmetry》2006,17(22):3158-3162
The synthesis and enantioseparation of chiral 3,4-dihydro-1,2,4-benzothiadiazine 1,1-dioxide derivatives are reported herein. A HPLC stopped-flow procedure was applied to the determination of rate constants and free energy barriers of enantiomerization of the compounds synthesized in the presence of achiral stationary phase. The individual enantiomers of the studied compounds were isolated in parallel by preparative HPLC on a Chiraspher NT column. Rate constants and free energy barriers of enantiomerization were determined in the mobile phase. The results were used to determine the influence of the chiral stationary phase on the enantiomerization process.  相似文献   

6.
A number of chiral oxime compounds have been synthesised and their gas chromatographic analysis on both a polyethelene glycol phase column and two chiral column phases was investigated. Of particular interest to this work is the observation of dynamic interconversion behaviour, both in a single dimensional analysis, and by using comprehensive two-dimensional gas chromatography (GC × GC). A number of non-chiral compounds were studied as a means to understand the nature of the behaviour observed. As expected, the achiral compound on both the wax column and the chiral column generated two isomeric compounds—the E and Z isomers. On the wax column, a characteristic interconversion zone representing the dynamic process was observed, with extent of interconversion dependent on the conditions used. For the chiral compounds, two isomers and the interconversion zone were exhibited on the wax column, however on the chiral column 4 isomeric peaks were found—the (R) and (S) enantiomers of each of the E and Z isomers. In the case of the chiral column, the extent of interconversion was negligible, and this appears to correlate with the use of low polarity columns. In order to encourage dynamic interconversion, a polyethylene glycol column was coupled to the chiral column, by placing it either before or after the chiral column. In this case a monitor detector was employed between the two columns in order to isolate the effects of the first column from the behaviour on the second. In a further study, the most appropriate column arrangement from the earlier study was placed into a comprehensive two-dimensional gas chromatography instrument, with a wax-phase column in the second dimension. The unique location of peaks for each of the molecules in 2D space and patterns for the interconversion processes is interpreted phenomenologically.  相似文献   

7.
A classical kinetic method was used to determine the energy barrier for the inter-conversion of 2,3-pentadienedioic acid enantiomers. Each individual enantiomer was isolated by collecting the appropriate peaks from the HPLC enantiomeric separation, of racemic 2,3-pentadienedioic acid. The isolated enantiomers were racemized at 22 degrees C using various interconversion times. The ratio of enantiomers in each reaction solution was determined by HPLC at 22 degrees C. The corresponding peak areas of the enantiomers and the interconversion times obtained from the HPLC chromatograms were used to calculate both the interconversion rate constants describing (+)--> (-) and (-) --> (+) interconversions as well as the energy barriers. It was confirmed that the interconversion of 2,3-pentadienedioic acid enantiomers is a firstorder kinetic reaction. Both semiempirical and ab initio methods were used to explore the mechanism of the interconversion of 2,3-pentadienedioic acid enantiomers, and to calculate the interconversion energy barrier. Comparison of the interconversion energy barriers found by the ab initio method (deltaG# = 110.7 kJ/mol) and by classical kinetics in the mobile phase solution at 22 degrees C (delta Gapp = 93.9+/-0.2 kJ/mol) shows a difference which may be attributed to the different conditions assumed in the theoretical calculation (i.e., a gaseous state) and the actual experimental conditions (i. e., liquid solution) and a possible catalytic effect of the solution composition.  相似文献   

8.
The method for determination of rate constants of interconversion of enantiomers in chiral and achiral environments of a dynamic enantioseparation system was investigated in order to reveal its accuracy, sensitivity and robustness. Two significantly different enantioseparation systems were selected, one with a single (well-defined) chiral selector (CS) and the second with a mixture of CSs, and the rate constants of interconversion for these two systems were compared statistically. While the rate constants of interconversion in the chiral environment were found to be significantly different, the rate constants in achiral environment were confirmed to be statistically the same. The accuracy of the method was independent of experimental conditions. Influence of a CS and temperature on the rate of interconversion were discussed within the scope of determined thermodynamic parameters and statistical evaluation. A certain temperature may exist at which two different types of CSs influence the rate of interconversion equally while the extent of their influence may largely differ at other temperatures.  相似文献   

9.
Highly efficient and sophisticated separation techniques are available to analyze complex compound mixtures with superior sensitivities and selectivities often enhanced by a 2nd dimension, e.g. a separation technique or spectroscopic and spectrometric techniques. For enantioselective separations numerous chiral stationary phases (CSPs) exist to cover a broad range of chiral compounds. Despite these advances enantioselective separations can become very challenging for mixtures of stereolabile constitutional isomers, because the on-column interconversion can lead to completely overlapping peak profiles. Typically, multidimensional separation techniques, e.g. multidimensional GC (MDGC), using an achiral 1st separation dimension and transferring selected analytes to a chiral 2nd separation are the method of choice to approach such problems. However, this procedure is very time consuming and only predefined sections of peaks can be transferred by column switching to the second dimension. Here we demonstrate for stereolabile 1,2-dialkylated diaziridines a technique to experimentally deconvolute overlapping gas chromatographic elution profiles of constitutional isomers based on multiple-reaction-monitoring MS (MRM-MS). The here presented technique takes advantage of different fragmentation probabilities and pathways to isolate the elution profile of configurational isomers.  相似文献   

10.
A novel stopped-flow multidimensional HPLC (sf-MD-HPLC) procedure has been developed to investigate simultaneously the effect of the pH on the enantiostability and hydrolysis of (+/-)-7-chloro-3-methyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide [(+/-)IDRA21]. It was possible to determinate the rate constants and free energy barriers of enantiomerization and hydrolysis rate constants of (+/-)IDRA21, by using two chiral stationary phases (CSPs) and one achiral C18 column. A classical batchwise kinetic method was used to calculate rate constants of hydrolysis at the same temperature and in the same buffers used in sf-MD-HPLC. The good agreement of the results obtained validate the sf-MD-HPLC procedure. Furthermore, hydrolysis rate constants of (+/-)IDRA21 were calculated in a series of buffers over a pH range of 1.20-10.60 at 37 degrees C in order to evaluate the influence of the pH on hydrolysis.  相似文献   

11.
In this paper, an HPLC method is used to determine the enantiomerization barrier of 2,3-pentadienedioic acid enantiomers. The racemate of 2,3-pentadienedioic acid was separated by HPLC on a chiral CHIROBIOTIC T column with a 90:10 (100:0.5:0.5 MeOH/HOAc/TEA)/H2O mobile phase. Peak areas of enantiomers prior to (A(+)0, A(-)0) and after the separation (A(+), A(-)), were used for calculation of the rate constants and the enantiomerization barrier, as determined by computer-assisted peak deconvolution of the peak clusters on the chromatograms. The kinetic equation for irreversible reactions was used to determine the apparent enantiomerization rate constants and the interconversion energy barrier. The dependence of the apparent enantiomerization barrier (deltaG1(app), deltaG-1(app)) on temperature was used to determine the apparent activation enthalpy (deltaH1(app), deltaH(-1)app) and entropy (deltaS1(app), deltaS-1(app)) for the interconversion of 2,3-pentadienedioic acid enantiomers, where the coefficients 1 and -1 designate the interconversions (+) --> (-) and (-) --> (+), respectively.  相似文献   

12.
Analysis of atropisomers is of considerable interest in the pharmaceutical industry. For complex chiral molecules with several chiral centers hindered axial rotation can lead to formation of interconverting diastereomers that should be separable on achiral stationary phases. However, achieving the actual separation may be difficult as the on-column separation speed must match or be faster then the rate of isomer interconversion. Often, this requirement can be satisfied by using low-temperature conditions and by improving selectivity via use of chiral stationary phases. In the current study, we present an alternative approach utilizing an Obelisc R column, a novel mixed mode stationary phase that provided acceptable separation of triphenyl atropisomers inside a conventional HPLC temperature range. The separation was investigated under various chromatographic conditions. The interconversion chromatograms exhibited classic peak-plateau-peak behavior indicating the simultaneous atropisomer separation and interconversion. The elution profiles were integrated in order to deconvolute the peak areas of the "pure" (non-exchanged) and interconverted species; these data were used to obtain kinetic information. Analysis of retention data rendered thermodynamic information on the mechanism of retention and selectivity. Chromatographic kinetic data were complemented with variable-temperature NMR and molecular modeling studies, which provided additional support and insights into the energetics of the interconversion process.  相似文献   

13.
Three commercially available chiral capillary columns, Chirasil-Dex, BGB-176SE, and BGB-172, have been evaluated for the separation into enantiomers of the 19 chiral polychlorinated biphenyls (PCB) congeners stable at room temperature. The enantiomers of 15 chiral PCBs were, at least to some extent, separated using these beta-cyclodextrin based columns. Multidimensional techniques, such as heart-cut multi-dimensional gas chromatography (heart-cut MDGC) and comprehensive two-dimensional gas chromatography (GC x GC), were investigated for their ability to solve coelution problems with other PCBs present in commercial mixtures and real-life samples. Heart-cut MDGC improved the separation as compared to one-dimensional GC, and enantiomeric fractions of the investigated chiral PCBs could be determined free from interferences. However, limitations on the number of target compounds that can be transferred to the second column in a single run and, therefore, the time consumption, have led to the evaluation of GC x GC as an alternative for this type of analysis. With GC x GC, two column set-ups were tested, both having a chiral column as first-dimension column, and two different polar stationary phase columns in the second dimension. On using both column combinations, congeners 84, 91, 95, 132, 135, 136, 149, 174, and 176 could be determined free from coelutions with other PCBs. Results on the application of heart-cut MDGC to food samples such as milk and cheese are given, as well as the first results on the application of GC x GC to this type of samples.  相似文献   

14.
Dubský P  Tesarová E  Gas B 《Electrophoresis》2004,25(4-5):733-742
When enantiomers separated by chromatography or capillary electrophoresis undergo interconversion reaction (enantiomerization) during the separation, it leads to a typical detection pattern: two individual peaks of the separated enantiomers are connected with a plateau consisting of a mixture of both separated enantiomers. We propose a separation method for determination of all individual rate constants (or inversion barriers) of the interconversion. The method enables to distinguish which part of interconversion takes place in the free (unbound) form of the analyte and which part in the complexed (bound) form. Further, we propose a complete dynamic model of capillary electrophoresis of interconverting enantiomers based on solving a complete set of continuity equations for all constituents of the separation system together with complexation and acid-base equilibria. This allows a simulation of both linear and nonlinear mode of separation and understanding all processes taking place in such enantioseparation systems. We demonstrate the applicability of the method on determination of the rate constants of interconversion of oxazepam enantiomers separated in systems with charged cyclodextrin chiral selectors.  相似文献   

15.
In rural parts of South Africa the organochlorine insecticide DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) is still used for malaria vector control where traditional dwellings are sprayed on the inside with small quantities of technical DDT. Since o,p′-DDT may show enantioselective oestrogenicity and biodegradability, it is important to analyse enantiomers of o,p′-DDT and its chiral degradation product, o,p′-DDD, for both health and environmental-forensic considerations. Generally, chiral analysis is performed using heart-cut multidimensional gas chromatography (MDGC) and, more recently, comprehensive two-dimensional gas chromatography (GC × GC). We developed an off-line gas chromatographic fraction collection (heart-cut) procedure for the selective capturing of the appropriate isomers from a first apolar column, followed by reinjection and separation on a second chiral column. Only the o,p′-isomers of DDT and DDD fractions from the first dimension complex chromatogram (achiral apolar GC column separation) were selectively collected onto a polydimethylsiloxane (PDMS) multichannel open tubular silicone rubber trap by simply placing the latter device on the flame tip of an inactivated flame ionisation detector (FID). The multichannel trap containing the o,p′-heart-cuts was then thermally desorbed into a GC with time-of-flight mass spectrometry detection (GC–TOFMS) for second dimension enantioselective separation on a chiral column (β-cyclodextrin-based). By selectively capturing only the o,p′-isomers from the complex sample chromatogram, 1D separation of ultra-trace level enantiomers could be achieved on the second chiral column without matrix interference. Here, we present solventless concentration techniques for extraction of DDT from contaminated soil and air, and report enantiomeric fraction (EF) values of o,p′-DDT and o,p′-DDD obtained by a new multidimensional approach for heart-cut gas chromatographic fraction collection for off-line second dimension enantiomeric separation by 1D GC–TOFMS of selected isomers. This multidimensional method is compared to the complementary technique of comprehensive GC × GC–TOFMS using the same enantioselective column, this time as the first dimension of separation.  相似文献   

16.
The kinetics of the reversible enantiomer interconversion of 3-nitrobutan-2-one (1), 3-nitropentan-2-one (2), and 2-nitropentan-3-one (3) have been studied by dynamic high-resolution gas chromatography (DHRGC) by using a beta-cyclodextrin derivative chiral stationary phase; the process occurs via enolization of the keto forms. The DHRGC experiments involving the studied nitroketones and the chiral stationary phase show chromatographic profiles with a typical interconversion plateau in the temperature range between 130 and 160 degrees C. Computer simulation of the experimental chromatographic elution profiles was employed for the determination of rate constants and the corresponding enantiomerization barriers (k, DeltaG#(T), DeltaH#, and DeltaS#). The highly negative entropy of activation (DeltaS# values from -19 to -37 cal mol(-1) K(-1)) points to a transition state (TS) with large charge separation. The obtained results for 1-3 show the dramatic effect of an alpha-nitro-substituent on the rate of enolization of simple ketones, when compared with those for 3-chloro-2-butanone and 3-methyl-2-pentanone. To get some information on the separate contributions of the stationary liquid phase and the mobile gas phase on the studied process, some DFT ab initio calculations have been performed for the same compounds.  相似文献   

17.
Schoetz G  Trapp O  Schurig V 《Electrophoresis》2001,22(15):3185-3190
Enantioselective chromatographic methods, representing the most commonly used techniques for the determination of enantiomeric ratios, can also be used for the evaluation of stereochemical integrity. In the present study, dynamic capillary electrokinetic chromatography (DEKC) was employed to determine the enantiomerization barrier of thalidomide. In the presence of the chiral mobile phase additive carboxymethyl-beta-cyclodextrin, the interconverting enantiomers of thalidomide produced characteristic elution profiles exhibiting plateaus and/or peak broadening between 25 and 55 degrees C at pH 8. To obtain the enantiomerization barrier of thalidomide from experimental data, the fast and efficient simulation program ChromWin was used to simulate the experimental interconversion profiles and to obtain the apparent rate constants k1app(T). Additionally, these values were compared with the novel approximation function for the direct calculation of enantiomerization barriers from chromatographic parameters of elution profiles. From the rate constants k1app(T) of temperature-dependent measurements the kinetic activation parameters deltaG(T)#,deltaH#, and deltaS# of the enantiomerization of thalidomide were obtained. At 25 degrees C, the enantiomerization barrier deltaG# was determined to be 102 +/- 1 kJ/mol at pH 8 in the dynamic electrokinetic chromatographic experiment.  相似文献   

18.
Summary A new stationary phase [bikis(2,6-di-O-pentyl-3-O-hex-6-enyl)-pentakis(2,6-di-O-pentyl-3-O-methyl)-β-CD-polysiloxane] was synthesized and successfully applied in GC for the separation of chiral and achiral isomers. It possesses high column efficiency and exhibits excellent separation ability for disubstituted benzenes. Some typical enantiomers and optical isomers are well separated. The separation behavior of this new phase is characterized and discussed.  相似文献   

19.
In this research the separation of the enantiomers of the basic drug bidisomide (SC-40230) from five closely related known process impurities was investigated using several neutral and anionic sulfobutylether beta-cyclodextrins (SBE-beta-CDs) as isomer selectors. Several novel sulfobutylether derivative mixtures and purified charge types having a specific degree of substitution were used to study the effect of selector charge on the efficiency and selectivity of both chiral and achiral separations. The effects of run buffer pH, selector type, and selector concentration on the chiral separation of bidisomide and the achiral separation of the related process impurities was also investigated. The related process impurity, SC-47500, displayed significant peak tailing with SBE-beta-CD mixtures which contained mono- to deca-substituted cyclodextrins. This problem was explored using isolated SBE-beta-CD charge types having degrees of substitution from one to seven. Peak tailing increased as the charge on the selector increased, suggesting that the distortion was due to electrodispersion and the large countercurrent mobility of the negatively charged complexes. Pure charge types having a lower degree of substitution provided adequate chiral and achiral selectivity, while eliminating the severe peak distortion caused by electrodispersion. The complete analysis of the bidisomide enantiomers and the related impurities was achieved with a pH 2.5 running buffer containing 5-10 mM of the isolated sulfobutylether charge types SBE[2]ds(1)sr-beta-CD or SBE[3]ds(1)sr-beta-CD. These conditions gave baseline resolution of bidisomide enantiomers and all five impurities, thus allowing both chiral and achiral purity to be determined in a single run.  相似文献   

20.
Enantioseparation and determination of selenomethionine enantiomers in selenized yeast was investigated using chiral separation techniques based on different principles, coupled on-line to inductively coupled plasma mass spectrometry (ICP-MS) for selenium-specific detection. High performance liquid chromatography (HPLC) on a beta-cyclodestrin (beta-CD) column, cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC), gas chromatography (GC) on a Chirasil-L-Val column, and HPLC on a Chirobiotic T column have been investigated as the chiral separation techniques. For HPLC separation on the beta-CD column, and also for CD-MEKC, selenomethionine enantiomers were derivatized with NDA/CN(-). For chiral separation by GC, selenomethionine enantiomers were converted into their N-trifluoroacetyl (TFA)-O-alkyl esters. The developed hybridation methodologies are compared with respect to enantioselectivity, sensitivity and analysis time. The usefulness of the best-suited method [HPLC (Chirobiotic T)-ICP-MS] was demonstrated by its application to the successful chiral speciation of selenium and D-and L-selenomethionine content determination in selenized yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号