首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zn(II) binding by the dipyridine-containing macrocycles L1-L3 has been analyzed by means of potentiometric measurements in aqueous solutions. These ligands contain one (L1, L2) or two (L3) 2,2'-dipyridine units as an integral part of a polyamine macrocyclic framework having different dimensions and numbers of nitrogen donors. Depending on the number of donors, L1-L3 can form stable mono- and/or dinuclear Zn(II) complexes in a wide pH range. Facile deprotonation of Zn(II)-coordinated water molecules gives mono- and dihydroxo-complexes from neutral to alkaline pH values. The ability of these complexes as nucleophilic agents in hydrolytic processes has been tested by using bis(p-nitrophenyl) phosphate (BNPP) as a substrate. In the dinuclear complexes the two metals play a cooperative role in BNPP cleavage. In the case of the L2 dinuclear complex [Zn(2)L2(OH)(2)](2+), the two metals act cooperatively through a hydrolytic process involving a bridging interaction of the substrate with the two Zn(II) ions and a simultaneous nucleophilic attack of a Zn-OH function at phosphorus; in the case of the dizinc complex with the largest macrocycle L3, only the monohydroxo complex [Zn(2)L3(OH)](3+) promotes BNPP hydrolysis. BNPP interacts with a single metal, while the hydroxide anion may operate a nucleophilic attack. Both complexes display high rate enhancements in BNPP cleavage with respect to previously reported dizinc complexes, due to hydrophobic and pi-stacking interactions between the nitrophenyl groups of BNPP and the dipyridine units of the complexes.  相似文献   

2.
The synthesis and characterization of three new bis([9]aneN(3)) ligands, containing respectively 2,2'-bipyridine (L(1)), 1,10-phenanthroline (L(2)), and quinoxaline (L(3)) moieties linking the two macrocyclic units, are reported. Proton binding and Cu(II), Zn(II), Cd(II), and Pb(II) coordination with L(1)-L(3) have been studied by potentiometric titrations and, for L(1) and L(2), by spectrophotometric UV-vis measurements in aqueous solutions. All ligands can give stable mono- and dinuclear complexes. In the case of L(1), trinuclear Cu(II) complexes are also formed. The stability constants and structural features of the formed complexes are strongly affected by the different architecture and binding properties of the spacers bridging the two [9]aneN(3) units. In the case of the L(1) and L(2) mononuclear complexes, the metal is coordinated by the three donors of one [9]aneN(3) moiety; in the [ML(2)](2+) complexes, however, the phenanthroline nitrogens are also involved in metal binding. Finally, in the [ML(3)](2+) complexes both macrocyclic units, at a short distance from each other, can be involved in metal coordination, giving rise to sandwich complexes. In the binuclear complexes each metal ion is generally coordinated by one [9]aneN(3) unit. In L(1), however, the dipyridine nitrogens can also act as a potential binding site for metals. The dinuclear complexes show a marked tendency to form mono-, di-, and, in some cases, trihydroxo species in aqueous solutions. The resulting M-OH functions may behave as nucleophiles in hydrolytic reactions. The hydrolysis rate of bis(p-nitrophenyl)phosphate (BNPP) was measured in aqueous solution at 308.1 K in the presence of the L(2) and L(3) dinuclear Zn(II) complexes. Both the L(2) complexes [Zn(2)L(2)(OH)(2)](2+) and [Zn(2)L(2)(OH)(3)](+) and the L(3) complex [Zn(2)L(3)(OH)(3)](+) promote BNPP hydrolysis. The [Zn(2)L(3)(OH)(3)](+) complex is ca. 2 orders of magnitude more active than the L(2) complexes, due both to the short distance between the metal centers in [Zn(2)L(3)(OH)(3)](+), which could allow a bridging interaction of the phosphate ester, and to the simultaneous presence of single-metal bound nucleophilic Zn-OH functions. These structural features are substantially corroborated by semiempirical PM3 calculations carried out on the mono-, di-, and trihydroxo species of the L(3) dizinc complex.  相似文献   

3.
Previously reported mono- and dinuclear Zn(II), Cu(II), and Ni(II) complexes of 1,4,7,10-tetrazacyclododecane ([12]aneN4 or cyclen) with different heterocyclic spacers (triazine, pyridine) of various lengths (bi- and tripyridine) or an azacrown-pendant have been tested for the hydrolysis of bis(4-nitrophenyl)phosphate (BNPP) under physiological conditions (pH 7-9, 25 degrees C). All Zn(II) complexes promote the hydrolysis of BNPP under physiological conditions, while those of Cu(II) and Ni(II) do not have a significant effect on the hydrolysis reaction. The hydrolysis kinetics in buffered solutions (0.05 M Bis/Tris, TRIS, HEPES, or CHES, I=0.1 M, NaCl) at 25 degrees C were determined by the initial slope method (product conversion<5%). Comparison of the second-order pH-independent rate constants (kBNPP, M(-1) s(-1)) for the mononuclear complexes ZnL1, ZnL3, and ZnL6, which are 6.1x10 (-5), 5.1x10(-5), and 5.7x10(-5), respectively, indicate that the heterocyclic moiety improves the rate of hydrolysis up to six times over the parent Zn([12]aneN4) complex (kBNPP=1.1x10(-5) M(-1) s(-1)). The reactive species is the Zn(II)-OH- complex, in which the Zn(II)-bound OH- acts as a nucleophile. For dinuclear complexes Zn2L2, Zn2L4, and Zn2L5, the rate of reaction is defined by the degree of cooperation between the metal centers, which is determined by the spacer length. Zn2L2 and Zn2L4 possessing shorter spacers are able to hydrolyze BNPP 1 to 2 orders of magnitudes faster than Zn2L5. The second-order rate constants k of Zn2L4 and Zn2L2 at pH 7, 8, and 9 are significantly higher than those of previously reported related complexes. The high BNPP hydrolytic activity may be related to pi-stacking and hydrophobic interactions between the aromatic spacer moieties and the substrate. Complexes Zn2L4 and Zn2L2 show hydrolytic activity at pH 7 and 8, which allows for the hydrolysis of activated phosphate esters under physiological conditions.  相似文献   

4.
Aqueous copper(II) N,N',N' '-trimethyl-cis,cis-1,3,5-triaminocyclohexane (Cu(tach-Me(3))(2+)(aq)) promotes the hydrolysis of activated phosphate diesters in aqueous medium at pH 7.2. This complex is selective for cleavage of the phosphate diester sodium bis(p-nitrophenyl) phosphate (BNPP), the rate of hydrolysis of the monoester disodium p-nitrophenyl phosphate being 1000 times slower. The observed rate acceleration of BNPP hydrolysis is slightly greater than that observed for other Cu(II) complexes, such as [Cu([9]aneN(3))Cl(2)] ([9]aneN(3) identical with 1,4,7-triazacyclononane). The rate of hydrolysis is first-order in phosphate ester at low ester concentration and second-order in [Cu(tach-Me(3))](2+)(aq), suggesting the involvement of two metal complexes in the mechanism of substrate hydrolysis. The reaction exhibits saturation kinetics with respect to BNPP concentration according to a modified Michaelis-Menten mechanism: 2CuL + S <==> LCu-S-CuL --> 2CuL + products (K(M) = 12.3 +/- 1.8 mM(2), k(cat) = (4.0 +/- 0.4) x 10(-)(4) s(-1), 50 degrees C) where CuL (triple bond) [Cu(tach-Me(3))](2+), S (triple bond) BNPP, and LCu-S-CuL is a substrate-bridged dinuclear complex. EPR data indicate that the dicopper complex is formed only in the presence of BNPP; the active LCu-S-CuL intermediate species then slowly decays to products, regenerating monomeric CuL.  相似文献   

5.
The hydrolytic ability toward plasmid DNA of a mononuclear and a binuclear Zn(II) complex with two macrocyclic ligands, containing respectively a phenanthroline (L1) and a dipyridine moiety (L2), was analyzed at different pH values and compared with their activity in bis( p-nitrophenyl)phosphate (BNPP) cleavage. Only the most nucleophilic species [ZnL1(OH)]+ and [Zn2L2(OH)2]2+, present in solution at alkaline pH values, are active in BNPP cleavage, and the dinuclear L2 complex is remarkably more active than the mononuclear L1 one. Circular dichroism and unwinding experiments show that both complexes interact with DNA in a nonintercalative mode. Experiments with supercoiled plasmid DNA show that both complexes can cleave DNA at neutral pH, where the L1 and L2 complexes display a similar reactivity. Conversely, the pH-dependence of their cleavage ability is remarkably different. The reactivity of the mononuclear complex, in fact, decreases with pH while that of the dinuclear one is enhanced at alkaline pH values. The efficiency of the two complexes in DNA cleavage at different pH values was elucidated by means of a quantum mechanics/molecular mechanics (QM/MM) study on the adducts between DNA and the different complexed species present in solution.  相似文献   

6.
The catalytic hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) and p-nitrophenyl phosphate (NPP) by metallomicelles composed of Cu(II) or Zn(II) complexes of bispyridine-containing alkanol ligands in CTAB micellar solution was investigated at 30 degrees C. The experimental results indicate that the complexes with a 1:1 ratio of ligands to metal ions for ligands 1 (1,7-bis(6-hydroxymethyl-2-pyridyl)-2,6-dioxaheptane) and 3 (1,4-bis[(6-hydroxymethyl-2-pyridyl)-2-oxapropyl]benzene) and a 1:2 ratio of ligands to metal ions for ligand 2 (1,14-bis(6-hydroxymethyl-2-pyridyl)-2,13-dioxatetradecane) in CATB micellar solution are the active species for the catalytic hydrolysis of BNPP and NPP, respectively. The ternary complex kinetic model for metallomicellar catalysis was employed to obtain the relative kinetic and thermodynamic parameters, which demonstrated the catalytic mechanism for the hydrolysis of BNPP and NPP by metallomicelles.  相似文献   

7.
Three new derivatives of bis(2-pyridylmethyl)amine (DPA) featuring ethylguanidinium (L (1)), propylguanidinium (L (2)), or butylguanidinium (L (3)) pendant groups have been prepared by the reaction of N, N- bis(2-pyridylmethyl)alkane-alpha,omega-diamines with 1 H-pyrazole-1-carboxamidine hydrochloride. The corresponding mononuclear copper(II) complexes were prepared by reacting the ligands with copper(II) nitrate and were isolated as [Cu(LH (+))(OH 2)](ClO 4) 3. xNaClO 4. yH 2O ( C1: L = L (1), x = 2, y = 3; C2: L = L (2), x = 2, y = 4; C3: L = L (3), x = 1, y = 0) following cation exchange purification. Recrystallization yielded crystals of composition [Cu(LH (+))(X)](ClO 4) 3.X ( C1': L = L (1), X = MeOH; C2': L = L (2), X = H 2O; C3': L = L (3), X = H 2O), which were suitable for X-ray crystallography. The crystal structures of C1', C2', and C3' indicate that the DPA moieties of the ligands coordinate to the copper(II) centers in a meridional fashion, with a water or methanol molecule occupying the fourth basal position. Weakly bound perchlorate anions located in the axial positions complete the distorted octahedral coordination spheres. The noncoordinating, monoprotonated guanidinium groups project away from the Cu(II)-DPA units and are involved in extensive charge-assisted hydrogen-bonding interactions with cocrystallized water/methanol molecules and perchlorate anions within the crystal lattices. The copper(II) complexes were tested for their ability to promote the cleavage of two model phosphodiesters, bis( p-nitrophenyl)phosphate (BNPP) and uridine-3'- p-nitrophenylphosphate (UpNP), as well as supercoiled plasmid DNA (pBR 322). While the presence of the guanidine pendants was found to be detrimental to BNPP cleavage efficiency, the functionalized complexes were found to cleave plasmid DNA and, in some cases, the model ribose phosphate diester, UpNP, at a faster rate than the parent copper(II) complex of DPA.  相似文献   

8.
A series of pyrazolate-based dizinc(II) complexes has been synthesized and investigated as functional models for phosphoesterases, focusing on correlations between hydrolytic activity and molecular parameters of the bimetallic core. The Zn...Zn distance, the (bridging or nonbridging) position of the Zn-bound hydroxide nucleophile, and individual metal ion coordination numbers are controlled by the topology of the compartmental ligand scaffold. Species distributions of the various dizinc complexes in solution have been determined potentiometrically, and structures in the solid state have been elucidated by X-ray crystallography. The hydrolysis of bis(p-nitrophenyl)phosphate (BNPP) promoted by the dinuclear phosphoesterase model complexes has been investigated in DMSO/buffered water (1:1) at 50 degrees C as a function of complex concentration, substrate concentration, and pH. Coordination of the phosphodiester has been followed by ESI mass spectrometry, and bidentate binding could be verified crystallographically in two cases. Drastic differences in hydrolytic activity are observed and can be attributed to molecular properties. A significant decrease of the pK(a) of zinc-bound water is observed if the resulting hydroxide is involved in a strongly hydrogen-bonded intramolecular O(2)H(3) bridge, which can be even more pronounced than for a bridging hydroxide. Irrespective of the pK(a) of the Zn-bound water, a hydroxide in a bridging position evidently is a relatively poor nucleophile, while a nonbridging hydroxide position is more favorable for hydrolytic activity. Additionally, the metal array has to provide a sufficient number of coordination sites for activating both the substrate and the nucleophile, where phosphate diesters such as BNPP preferentially bind in a bidentate fashion, requiring a third site for water binding. Product inhibition of the active site by the liberated (p-nitrophenyl)phosphate is observed, and the product-inhibited complex could be characterized crystallographically. In that complex, the phosphate monoester is found to cap a rectangular array of four zinc ions composed of two bimetallic entities.  相似文献   

9.
Two alkanol-imidazole ligands have been synthesized. Metal (Cu(II), Zn(II), Ni(II)) complexes of these ligands have been investigated as catalysts for the hydrolysis of bis(p-nitrophenyl) phosphate (BNPP) in the buffered CTAB co-micellar solution at 30 degrees C and various pH values, respectively. The ternary complex kinetic model for metallomicellar catalysis was employed to analyze the results, to obtain the kinetic and thermodynamic parameters. The effect of the structure of the ligands and the microenvironment of the reaction on the hydrolytic reaction of BNPP has been discussed in detail. The results indicate that the hydrophobic interaction between the substrate and the metallomicellar catalyst and the micellar microenvironment are important factors.  相似文献   

10.
Slow evaporation of solutions prepared by adding either Cu(ClO(4))(2).6H(2)O or Zn(ClO(4))(2).6H(2)O to solutions containing appropriate proportions of Me(3)tacn (1,4,7-trimethyl-1,4,7-triazacyclononane) and sodium phenyl phosphate (Na(2)PhOPO(3)) gave dark blue crystals of [Cu(3)(Me(3)tacn)(3)(PhOPO(3))(2)](ClO(4))(2).(1)/(2)H(2)O (1) and colorless crystals of [Zn(2)(Me(3)tacn)(2)(H(2)O)(4)(PhOPO(3))](ClO(4))(2).H(2)O (2), respectively. Blue crystals of [Cu(tacn)(2)](BNPP)(2) (3) formed in an aqueous solution of [Cu(tacn)Cl(2)], bis(p-nitrophenyl phosphate) (BNPP), and HEPES buffer (pH 7.4). Compound 1 crystallizes in the triclinic space group P1 (No. 2) with a = 9.8053(2) A, b = 12.9068(2) A, c = 22.1132(2) A, alpha = 98.636(1) degrees, beta = 99.546(1) degrees, gamma = 101.1733(8) degrees, and Z = 2 and exhibits trinuclear Cu(II) clusters in which square pyramidal metal centers are capped by two phosphate esters located above and below the plane of the metal centers. The trinuclear cluster is asymmetric having Cu...Cu distances of 4.14, 4.55, and 5.04 A. Compound 2 crystallizes in the monoclinic space group P2(1)/c (No. 14) with a = 13.6248(2) A, b = 11.6002(2) A, c = 25.9681(4) A, beta = 102.0072(9) degrees, and Z = 4 and contains a dinuclear Zn(II) complex formed by linking two units of [Zn(Me(3)tacn)(OH(2))(2)](2+) by a single phosphate ester. Compound 3 crystallizes in the monoclinic space group C2/c (No. 15) with a = 24.7105(5) A, b = 12.8627(3) A, c = 14.0079(3) A, beta = 106.600(1) degrees, and Z = 4 and consists of mononuclear [Cu(tacn)(2)](2+) cations whose charge is balanced by the BNPP(-) anions.  相似文献   

11.
The basicity behavior and ligational properties of the ligand 2-((bis(aminoethyl)amino)methyl)phenol (L) toward Ni(II), Cu(II), and Zn(II) ions were studied by means of potentiometric measurements in aqueous solution (298.1 +/- 0.1 K, l = 0.15 mol dm-3). The anionic L-H- species can be obtained in strong alkaline solution; this species behaves as tetraprotic base (log K1 = 11.06, log K2 = 9.85, log K3 = 8.46, log K4 = 2.38). L forms mono- and dinuclear complexes in aqueous solution with all the transition metal ions examined; the dinuclear species show a [M2(L-H)2]2+ stoichiometry in which the ligand/metal ratio is 2:2. The studies revealed that two mononuclear [ML-H]+ species self-assemble, giving the dinuclear complexes, which can be easily isolated from the aqueous solution due to their low solubility. This behavior is ascribed to the fact that L does not fulfill the coordination requirement of the ion in the mononuclear species and to the capacity of the phenolic oxygen, as phenolate, to bridge two metal ions. All three dinuclear species were characterized by determining their crystal structures, which showed similar coordination patterns, where all the single metal ions are substantially coordinated by three amine functions and two oxygen atoms of the phenolate moieties. The two metals in the dinuclear complexes are at short distance interacting together as shown by magnetic measurements performed with Ni(II) and Cu(II) complexes, which revealed an antiferromagnetic coupling between the two metal ions. The [Cu2(L-H)2]2+ cation shows a phase transition occurring by the temperature between 100 and 90 K; the characterization of the compounds existing at different temperatures was investigated using X-ray single-crystal diffraction, EPR, and magnetic measurements.  相似文献   

12.
Dinuclear Cd(II), Cu(II), and Zn(II) complexes of L2OH (L2OH = 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane) are compared as catalysts for cleavage of the RNA analogue HpPNP (HpPNP = 2-hydroxypropyl 4-nitrophenyl phosphate) at 25 degrees C, I = 0.10 M (NaNO(3)). Zn(II) and Cu(II) readily form dinuclear complexes at millimolar concentrations and a 2:1 ratio of metal ion to L2OH at neutral pH. The dinuclear Zn(2)(L2O) and Cu(2)(L2O) complexes have a bridging alkoxide group that brings together the two cations in close proximity to facilitate cooperative catalysis. Under similar conditions, the dinuclear complex of Cd(II) is a minor species in solution; only at high pH values (pH 10.4) does the Cd(2)(L2O) complex become the predominant species in solution. Analysis of the second-order rate constants for cleavage of HpPNP by Zn(2)(L2O) is straightforward because a linear dependence of pseudo-first-order rate constant on dinuclear complex is observed over a wide pH range. In contrast, plots of pseudo-first-order rate constants for cleavage of HpPNP by solutions containing a 2:1 ratio of Cd(II) to L2OH as a function of increasing L2OH are curved, and second-order rate constants are obtained by fitting the kinetic data to an equation for the formation of the dinuclear Cd(II) complex as a function of pH and [L2OH]. Second-order rate constants for cleavage of HpPNP by these dinuclear complexes at pH 9.3 and 25 degrees C vary by 3 orders of magnitude in the order Cd(2)(L2O) (2.8 M(-)(1) s(-)(1)) > Zn(2)(L2O) (0.68 M(-)(1) s(-)(1)) > Cu(2)(L2O) (0.0041 M(-1) s(-1)). The relative reactivity of these complexes is discussed in terms of the different geometric preferences and Lewis acidity of the dinuclear Zn(II), Cu(II), and Cd(II) complexes, giving insight into the importance of these catalyst properties in the cleavage of phosphate diesters resembling RNA.  相似文献   

13.
The dinuclear ligand 1 based on the bis-(2-amino-pyridinyl-6-methyl)amine (BAPA) metal binding unit and featuring a two-atom disulfide bridge was synthesized and studied as hydrolytic catalysts for phosphate diesters. The Zn(II) complexes of BAPA are known to elicit the cooperation between the metal ion and the hydrogen-bond donating amino groups to greatly increase the rate of cleavage of phosphate diesters. The reactivity of the dinuclear complex 1·Zn(II)2 toward bis-p-nitrophenyl phosphate and plasmid DNA was investigated and compared with that of reference complexes devoid of the disulfide bridge or of the hydrogen-bond donating amino groups. The dimetallic Zn(II) complex produces remarkable accelerations of the rate of cleavage of both the substrates accompanied by significant differences. In the case of BNP, the presence of the disulfide bridge does not lead to the improvement of the cooperative action of the two metal ions expected as the result of better preorganization. On the other hand, in the case of DNA the complex 1·Zn(II)2 is much more reactive that the corresponding reference devoid of the disulfide bridge. Hence, different requisites must be fulfilled by a good catalyst for the cleavage of the two substrates. Moreover, binding studies with DNA indicated that the presence of two metal ions in the complex or of the pyridine amino groups, but not of the disulfide bridge, results into an enhanced affinity of the complexes toward this substrate.  相似文献   

14.
The dinucleating ligand 1,3-bis[bis(pyridin-2-ylmethyl)amino] propan-2-ol (I, LOH) is becoming of increasing interest due to the exceptional phosphate monoester binding and phosphate diester hydrolytic properties of its dizinc(II) complexes in water. Potentiometric pH titrations using a range of Zn:I ratios reveals the formation of mononuclear and dinuclear metal complexes. In fact, when the Zn:I ratio is 1:1 only mononuclear complexes are formed. Previous work reported the formation of only dinuclear species. Thus, the results presented here should be important to interpret correctly and more accurately phosphate ester binding and hydrolysis data. Moreover, based on these findings we suggest that the phosphate binding and hydrolytic properties of mixtures containing Zn(II) ions and I should depend not only on the pH but also on the Zn:I ratio used.  相似文献   

15.
The chelate ligand tris[(1-vinylimidazol-2-yl)methyl]amine (5) was synthesized in five steps from commercially available starting materials. Upon reaction with ZnCl2 or CuCl2 in the presence of NH4PF6, the complexes [Zn5Cl]PF6 (6) and [Cu5Cl]PF6 (7) were obtained. The structure of both complexes was determined by single-crystal X-ray crystallography. Immobilization of 6 and 7 was achieved by co-polymerization with ethylene glycol dimethacrylate. The supported complexes P6-Zn and P7-Cu were found to be efficient catalysts for the hydrolysis of bis(p-nitrophenyl)phosphate (BNPP) at 50 degrees C. At pH 9.5, the heterogeneous catalyst P7-Cu was 56 times more active than the homogeneous catalyst 7. Partitioning effects, which increase the local concentration of BNPP in the polymer, are shown to contribute to the enhanced activity of the immobilized catalyst.  相似文献   

16.
The stability constants of Cu(II) complexes that consist of either an oxaaza macrocycle with two triamine moieties linked by dioxa chains, or two macrocyclic ligands with a polyamine chain which are connecting the 2 and 9 positions of phenanthroline, have been determined by means of potentiometric measurements. The results are compared to those reported for other ligands with a similar molecular architecture. Of the complexes that contain phenanthroline in their macrocycle, the Cu(II) ion of the complex with the smallest and most rigid macrocycle (L3) has an unsaturated coordination sphere, while in the complex with the largest macrocycle (L5) the Cu(II) ion is coordinatively almost saturated. These results are corroborated by the crystal structure of the [CuL5](ClO4)2 complex. The affinity of the ligands and the complexes towards nucleic acids was studied by measuring the changes in the melting temperature, which showed that the affinity of the macrocyclic ligands towards double-stranded DNA or RNA is generally smaller than that of their linear analogues that bear a similar charge, with a strong preference for polyA-polyU, a model for RNA. However, the complexes of two of the changed macrocyclic ligands which contain a phenanthroline unit (L4, L5) showed a distinctly larger increase in their melting temperature deltaTm with DNA (polydA-polydT), which is reversed again in favor of RNA upon metallation to the dinuclear copper complex with L5. Experiments with supercoiled plasmid DNA showed a particularly effective cleavage with a mononuclear Cu(II) complex that contains a phenanthroline unit (L6). Related ligands showed less activity towards DNA, but not so towards the biocidic bis(p-nitrophenyl)phosphate (BNPP). In both cases (with DNA and BNPP) the activity seemed to increase with decrease of coordinative saturation of the Cu(II) ion, with the exception of one particular ligand (L6). Experiments with radical scavengers in the DNA experiments showed some decrease in cleavage, which indicates the participation of redox processes.  相似文献   

17.
The activities of the catalytic hydrolysis of phosphate diester(BNPP)[bis(p-nitrophenyl)phosphate diester]and plasmid DNA (pUC18)by mononuclear macrocyclic polyamine metal complexes have been investigated in this paper.The results showed that the highest activity in hydrolysis of BNPP was obtained with 1e-Zn(Ⅱ)complex(composed of lipophilic group)as catalyst.The hydrolysis rate enhancement is up to 3.64×10~4 fold.These metal complexes could effectively promote the cleavage of plasmid DNA(pUC18)at physiol...  相似文献   

18.
Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(II) complex (Zn2L3+) has been studied (L = alkoxide species of 1,3-bis[bis(pyridin-2-ylmethyl)amino]propan-2-ol). Potentiometric pH titration study disclosed a 1 : 1 phenyl phosphate complexation with Zn2L3+ in aqueous solution. The dissociation constant (= [Zn2L3+][PhOPO3(2-)]/[Zn2L3+-PhOPO3(2-)]) is an extremely small value of 2.5 x 10(-8) mol dm(-3) at 25 degrees C with I = 0.10 (NaNO3). The X-ray crystal analysis of the dizinc(II) complex with p-nitrophenyl phosphate showed that the phosphate dianion binds as a bridging ligand to the two zinc(II) ions.  相似文献   

19.
The synthesis and characterization of a new bis([9]aneN3) ligand (H2L) containing two [9]aneN3 macrocyclic moieties separated by a 2,2'-methylene-bis-cresol (cresol = 4-methyl-phenol) unit is reported. A potentiometric and (1)H NMR study in aqueous solution reveals that H2L is in a zwitterionic form, and protonation of the cresolate oxygens occurs only with the formation of the highly charged (H5L)(3+) and (H6L)(4+) species at acidic pH values. The coordination properties of H2L toward Cu(II), Zn(II), Cd(II), and Pb(II) were studied by means of potentiometric and UV spectrophotometric measurements. The ligand gives both mono- and binuclear complexes in aqueous solution. At acidic pH values the ligand forms stable binuclear [M2H2L](4+) complexes, where each metal is coordinated by two amine groups of [9]aneN3 and the deprotonated oxygen of the adjacent cresol unit; the remaining amine group is protonated. Deprotonation of the [M2H2L](4+) species at alkaline pH values affords [M2L](2+) complexes, where all amine groups of the [9]aneN3 moieties are involved in metal coordination. Binding of mono-, di- and triphosphate, and adenosine triphosphate (ATP) was studied by means of potentiometric, (1)H and (31)P NMR measurements and by molecular dynamics simulations. The receptor forms stable 1:1 adducts with di-, triphosphate, and ATP, while the interaction with monophosphate is too low to be detected. In the complexes both the [9]aneN3 moieties act cooperatively in the substrate binding process. The stability of the adducts increases in the order diphosphate < triphosphate < ATP. This trend is explained in terms of increasing number of charge-charge interactions between the phosphate chains and the protonated [9]aneN3 subunits and, in the case of ATP, of stacking interactions between the adenine and cresol units.  相似文献   

20.
A series of mono- and di-[12]aneN(3) ligands 1-6, which contain different substituents on the coordinating backbone, different linkers between two [12]aneN(3) units and different N-methylation on the [12]aneN(3) units, have been synthesized and fully characterized. The catalytic activities of their metal complexes on the cleavage of RNA model phosphate 2-hydroxypropyl-p-nitrophenyl phosphate (HPNPP) varied with the structures of the ligands and metal ions. Click reactions afforded an efficient method to prepare a series of [12]aneN(3) ligands, however, the incorporation of triazole moieties reduced the catalytic activities due to their coordination with metal ions and the strong inhibition from the triflate counter ion. Dinuclear zinc(II) complexes containing an m-xylyl bridge showed higher catalytic activities with synergistic effects up to 700-fold. Copper(II) complexes with the ligands without triazole moieties proved to be highly reactive and showed strong cooperativity between the two copper(II) ions. In terms of k(2), dinuclear complexes Zn(2)-3b, Zn(2)-3d, Zn(2)-4b, and Cu(2)-4b afforded activities of 7.9 × 10(5), 3.9 × 10(4), 9.0 × 10(4), and 8.1 × 10(4)-fold higher than that of methoxide. The ortho arrangement of the two [12]aneN(3) units and the presence of 5- or 2-positioned substituents in the benzene ring as well as N-methylation of [12]aneN(3) units greatly reduced the catalytic activities due to the steric effects. These results clearly indicate that the structures of the linker between two [12]aneN(3) units play very important role in their catalytic synergistic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号