首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New amphiphilic comb-dendritic block copolymers were developed as building blocks that self-assemble into stable vesicular structures with narrow size distribution.  相似文献   

2.
Polymeric micelles based on a thermoresponsive linear-dendritic block copolymer were completely disrupted into unimers upon cooling the solution to a temperature below its LCST and reversibly regenerated upon heating again.  相似文献   

3.
The H-shaped block copolymers (PTMSPMA)2-PEG(PMPSTMSPMA)2 with two compositions, (EG)91-b-(TMSPMA)92 and (EG)455-b-(TMSPMA)176 have been successfully synthesized by atom transfer radical polymerization (ATRP) of tri(methoxylsilyl)propyl methacrylate (TMSPMA) at room temperature in methanol. The initiation system applied was composed of 2,2-bis(methylene α-bromoisobutyrate)propionyl terminated poly(ethylene glycol) (Br2PEGBr2) with M n = 4000 or 2000, CuBr and 2,2′-bipyridine. The macroinitiator, Br2PEGBr2, was prepared by the reaction of two hydroxyl groups terminated PEG with 2,2-bis(methylene α-bromoisobutyrate)propionyl chloride. The NMR spectroscopy and GPC measurements were used to characterize the structure and molecular weight and molecular weight distribution of the resultant copolymers. The H-shaped block copolymers Sam 1 and Sam 2 were self-assembled in DMF/water mixtures and then the trimethoxysilyl groups in PTMSPMA were cross-linked by condensation reaction in the presence of triethylamine. Stable large-compound vesicles with 10 nm diameter of cavities were formed for Sam 1 which contains a short PEG chain. However, the self-assembling of the Sam 2 in the selective solvents resulted in big vesicles aggregates. These two different morphologies of aggregates are attributed to their relative chain length of water soluble PEG. The vesicles formed from Sam1 with short PEG chains have big surface energy which will lead them to self-assemble further, forming large-compound vesicles. __________ Translated from Acta Polymerica Sinica, 2007, 10: 974–978 [译自: 高分子学报]  相似文献   

4.
5.
The aim of the present review is to show how the phenomena of block copolymer self-assembly and interactions of ionic (or ionizable) groups in polymer systems can be combined to produce materials with versatile and unique behavior. In our discussion, we consider two classes of tandem interactions. First, block copolymers containing short ionic blocks and long nonionic blocks are investigated in organic media. In systems of this type, block copolymer self-assembly and short-range electrostatic interactions act in tandem, forming regular and highly-stable spherical structures. Next, we consider ionic (or ionizable) block copolymers dissolved in aqueous media. In this case, block copolymer self-assembly acts in tandem with the hydrophilic nature of the soluble blocks, resulting in a wide range of unique morphologies.  相似文献   

6.
The preparation of ordered high-density polymer layers via the combined method of templated self-assembly is discussed. This approach combines the advantages of guided self-assembly of block copolymers and lithography on a topographical or chemical pattern. To implement the approach, a simulation has conducted for the first time through the use of the dissipative particle dynamics method in the NPAT ensemble. The pattern replication by asymmetric copolymers that form cylindrical phases in the bulk owing to their self-assembly near the patterned surface is studied. The effects of three patterns are described, i.e., hexagonal, rectangular, and triangular, which are characterized by one or two length scales. It is shown that the dense hexagonal pattern and the sparse rectangular and triangular patterns induce vertically oriented cylindrical domains in a thin film. The control of the orientation and ordering in the formed morphology heavily depends on the interaction between the minority component and the pattern. This effect is global in nature: The surface pattern propagates into the bulk of a film. In the case of rectangular and triangular patterns, two- and fourfold increases in their quantitites in the bulk are observed.  相似文献   

7.
Dramatic morphological changes are observed in the Langmuir-Blodgett (LB) film assemblies of poly(ethylene glycol)-b-(styrene-r-benzocyclobutene) block copolymer (PEG-b-(S-r-BCB)) after intramolecular cross-linking of the S-r-BCB block to form a linear-nanoparticle structure. To isolate architectural effects and allow direct comparison, the linear block copolymer precursor and the linear-nanoparticle block copolymer resulting from selective intramolecular cross-linking of the BCB units were designed to have exactly the same molecular weight and chemical composition but different architecture. It was found that the effect of architecture is pronounced with these macromolecular isomers, which self-assemble into dramatically different surface aggregates. The linear block copolymer forms disklike surface assemblies over the range of compression states, while the linear-nanoparticle block copolymer exhibits long (>10 microm) wormlike aggregates whose length increases as a function of increasing cross-linking density. It is shown that the driving force behind the morphological change is a combination of the altered molecular geometry and the restricted degree of stretching of the nanoparticle block because of the intramolecular cross-linking. A modified approach to interpret the pi-A isotherm, which includes presence of the block copolymer aggregates, is also presented, while the surface rheological properties of the block copolymers at the air-water interface provide in-situ evidence of the aggregates' presence at the air-water interface.  相似文献   

8.
A reversible addition-fragmentation chain transfer (RAFT) agent, the methyl-2-(n-butyltrithiocarbonyl)propanoate (MBTTCP) has shown to be efficient in controlling the polymerization of N,N-dimethylacrylamide (DMA), N-isopropylacrylamide (NIPAM) and N-acryloyloxysuccinimide (NAS). Two different strategies have been studied to synthesize block copolymers based on one PNIPAN block and the other a random copolymer of DMA and NAS. When a PNIPAM trithiocarbonate-terminated is used as macromolecular chain transfer agent for the polymerization of a mixture of NAS and DMA, well-defined P(NIPAM-b-(NAS-co-DMA)) block copolymers were obtained with a low polydispersity index. These thermoresponsive block copolymers dissolved in aqueous solution at 25 °C and self-assembled into micelles when the temperature was raised above the LCST of the PNIPAM block. The micelle shell containing NAS units was further crosslinked using a primary diamine in order to get shell-crosslinked nanoparticles. Upon cooling below the LCST of PNIPAM this structure may easily reorganize to form nanoparticles with a water filled hydrophilic core.  相似文献   

9.
The thermodynamic interactions in poly(styrene-block-ferrocenyldimethylsilane) and poly(isoprene-block-ferrocenyldimethylsilane) copolymers were systematically tuned by oxidation of the ferrocene moieties with silver nitrate. Small-angle X-ray scattering experiments show that oxidizing 8% of the ferrocene moieties lowers the order-disorder transition temperature of the copolymers by as much as 40 degrees C.  相似文献   

10.
Xu  Duo  Zhao  Li  Zhang  Kuo  Lu  Zhong-Yuan 《中国科学:化学(英文版)》2019,62(12):1666-1674
Science China Chemistry - Dynamic self-assembly processes occurring out of thermodynamic equilibrium underlie many forms of adaptive and intelligent behaviors in natural systems. Because of the...  相似文献   

11.
Controlled/"living" polymerizations and tandem polymerization methodologies offer enticing opportunities to enchain a wide variety of monomers into new, functional block copolymer materials with unusual physical properties. However, the use of these synthetic methods often introduces nontrivial molecular weight polydispersities, a type of chain length heterogeneity, into one or more of the copolymer blocks. While the self-assembly behavior of monodisperse AB diblock and ABA triblock copolymers is both experimentally and theoretically well understood, the effects of broadening the copolymer molecular weight distribution on block copolymer phase behavior are less well-explored. We report the melt-phase self-assembly behavior of SBS triblock copolymers (S = poly(styrene) and B = poly(1,4-butadiene)) comprised of a broad polydispersity B block (M(w)/M(n) = 1.73-2.00) flanked by relatively narrow dispersity S blocks (M(w)/M(n) = 1.09-1.36), in order to identify the effects of chain length heterogeneity on block copolymer self-assembly. Based on synchrotron small-angle X-ray scattering and transmission electron microscopy analyses of seventeen SBS triblock copolymers with poly(1,4-butadiene) volume fractions 0.27 ≤ f(B) ≤ 0.82, we demonstrate that polydisperse SBS triblock copolymers self-assemble into periodic structures with unexpectedly enhanced stabilities that greatly exceed those of equivalent monodisperse copolymers. The unprecedented stabilities of these polydisperse microphase separated melts are discussed in the context of a complete morphology diagram for this system, which demonstrates that narrow dispersity copolymers are not required for periodic nanoscale assembly.  相似文献   

12.
The controlled self-assembly of polymer-stabilized quantum dots (QDs) into mesoscale aqueous spherical assemblies using microfluidics is described. In a flow-focusing configuration, self-assembly is initiated by the addition of water to a blended solution of polystyrene-coated QDs and amphiphilic polystyrene-block-poly(acrylic acid) stabilizing chains and terminated in a downstream quench step. The on-chip evolution of assemblies is monitored through fluorescence microscopy, and particle size distributions are determined off-chip by transmission electron microscopy. On-chip size control of the assemblies is demonstrated via both the average water concentration in the channel and the flow rate.  相似文献   

13.
PEGylated dendron coils (PDCs) were investigated as a novel potential nanocarrier platform. PDCs self-assembled into micelles at lower CMCs than linear copolymer counterparts by 1-2 orders of magnitude, due to the unique architecture of dendrons. MD simulations also supported thermodynamically favourable self-assembly mediated by dendrons.  相似文献   

14.
We investigated the phase behavior and the microscopic structure of the colloidal complexes constituted from neutral/polyelectrolyte diblock copolymers and oppositely charged surfactant by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The neutral block is poly(N-isopropylacrylamide) (PNIPAM), and the polyelectrolyte block is negatively charged poly(acrylic acid) (PAA). In aqueous solution with neutral pH, PAA behaves as a weak polyelectrolyte, whereas PNIPAM is neutral and in good-solvent condition at ambient temperature, but in poor-solvent condition above approximately 32 degrees C. This block copolymer, PNIPAM-b-PAA with a narrow polydispersity, is studied in aqueous solution with an anionic surfactant, dodecyltrimethylammonium bromide (DTAB). For a low surfactant-to-polymer charge ratio Z lower than the critical value ZC, the colloidal complexes are single DTAB micelles dressed by a few PNIPAM-b-PAA. Above ZC, the colloidal complexes form a core-shell microstructure. The core of the complex consists of densely packed DTA+ micelles, most likely connected between them by PAA blocks. The intermicellar distance of the DTA+ micelles is approximately 39 A, which is independent of the charge ratio Z as well as the temperature. The corona of the complex is constituted from the thermosensitive PNIPAM. At lower temperature the macroscopic phase separation is hindered by the swollen PNIPAM chains. Above the critical temperature TC, the PNIPAM corona collapses leading to hydrophobic aggregates of the colloidal complexes.  相似文献   

15.
New fluorescent amphiphilic copolymers polyacrylamide-b-poly(p-methacrylamido)acetophenone thiosemicarbazone (PAM-b-PMATC) were synthesized by atom transfer radical polymerization (ATRP) method. The structures of polymers were confirmed by 1H NMR and gel permeation chromatography-multi-angle laser light scatting (GPC-MALLS). PAM-b-PMATC showed a broad emission peak about 388 nm excited at 318 nm in aqueous solution. The self-assembly behavior of PAM-b-PMATC in the binary mixture formamide/water was observed by transmission electron microscope (TEM). It indicated that PAM-b-PMATC-I and -II with the same PAM block self-assembled to vesicles and sunflower-like micelles. The water fraction in the mixture could control the size and thickness of vesicles. Vesicle size increased from 50 to 420 nm and vesicle thickness changed from 5 to 50 nm with water content ranging from 33 to 90 vol.%. In addition, the cytotoxicity in vitro of PAM-b-PMATC-I and its nanoparticles loaded with methotrexate (MTX) were evaluated by MTT assay.  相似文献   

16.
The self-assembly (SA) of amphiphilic block copolymers (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)) was investigated in dispersions of single-walled and multiwalled carbon nanotubes (SWNT and MWNT, respectively) as a function of temperature. Differential scanning calorimetry (DSC) was used for characterization of the thermal behavior of the combined polymers-nanostructures system, and spin-probe electron paramagnetic resonance (EPR) was employed for probing the local dynamic and polarity of the polymer chains in the presence of nanostructures. It was found that SWNT and MWNT modify the temperature, enthalpy, and dynamic behavior of polymer SA. In particular, SWNT were found to increase the cooperativity of aggregating chains and dominate aggregate dynamics. MWNT reduced the cooperativity, while colloidal carbon black additives, studied for comparison, did not show similar effects. The experimental observations are consistent with the suggestion that dimensional matching between the characteristic radius of the solvated polymer chains and the dimensions of additives dominate polymer SA in the hybrid system.  相似文献   

17.
A series of star-shaped copolymers containing poly (styrene) (PS) and poly(γ-benzyl-l-glutamate) (PBLG) were synthesized by click reaction from alkyne- and azide-functionalized homopolymers. The α-azide PS star-shaped homopolymer was synthesized by copper-mediated atom transfer radical polymerization from a bromine-containing star-shaped initiator, and α-alkyne PBLG homopolymers were synthesized by ring-opening polymerization of γ-benzyl-l-glutamate N-carboxyanhydride with an amino-containing α-alkyne initiator. The molecular structures of the homopolymers and star-shaped block copolymers were confirmed by 1H nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy (FTIR), and gel permeation chromatography analysis. The self-assembling behavior of the star-shaped block copolymers in bulk was investigated using wide-angle X-ray diffraction, and small-angle X-ray scattering. For star-shaped block copolymer at lower f PS of ~0.27, PBLG segment was assigned to a hexagonally packed-cylinder structure (Φ H) based on the rod-like α-helix conformation as shown in FTIR spectra. By increasing f PS to ~0.42, a proposed microphase-separated double-hexagonal morphology was observed, in which PBLG rods formed the core of the columns by interdigitated packing in Φ H phase with PS domain as the matrix in a larger hexagonal columnar structure. The proposed structure was based on calculation from the simulated molecular length of each block of the copolymer and experimental analyses.  相似文献   

18.
19.
The synthesis of rigid-rod, helical isocyanate-based macromonomers was achieved through the polymerization of hexyl isocyanate and 4-phenylbutyl isocyanate, initiated by an exo-norbornene functionalized half-titanocene complex. Sequential ruthenium-mediated ring-opening metathesis polymerization of these macromonomers readily afforded well-defined brush block copolymers, with precisely tunable molecular weights ranging from high (1512 kDa) to ultrahigh (7119 kDa), while maintaining narrow molecular weight distributions (PDI = 1.08-1.39). The self-assembly of these brush block copolymers to solid thin-films and their photonic properties were investigated. Due to the rigid architecture of these novel polymeric materials, they rapidly self-assemble through simple controlled evaporation to photonic crystal materials that reflect light from the ultra-violet, through the visible, to the near-infrared. The wavelength of reflectance is linearly related to the brush block copolymer molecular weight, allowing for predictable tuning of the band gap through synthetic control of the polymer molecular weight. A combination of scanning electron microscopy and optical modeling was employed to explain the origin of reflectivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号