首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a novel mathematical approach is devised to analyze the flow of blood from a droplet into a microcapillary channel. Special attention is devoted to estimate the effects of variable hydraulic resistance over different flow regimes, influence of suspended RBC particulates on the non-Newtonian flow characteristics and implications of a dynamically-evolving contact angle. Flow characteristics depicting advancement of the fluid within the microfluidic channel turn out to be typically non-linear, as per relative instantaneous strengths of the capillary forces and viscous resistances. It is found that the greater the 'pseudoplasticity' of the blood, the weaker the retarding shear forces. The driving forces, on the other hand, become stronger with time, on account of a reduction of contact angle with a decrease of blood flow velocity, although this strengthening is less prominent for blood samples with greater 'pseudoplasticity'. It is revealed that RBCs suspended in blood samples have a strong influence on the effective blood viscosity, and consequently, may drive the fluid significantly faster into the microchannel, especially when the characteristic length scales of the suspensions approach the hydraulic radius of the channel.  相似文献   

2.
曹荣凯  张敏  于浩  秦建华 《色谱》2022,40(3):213-223
循环肿瘤细胞(CTCs)的分离分析一直是肿瘤相关研究中的热点方向,作为液体活检的重要标志物之一,其在外周血中的含量与癌症病发状况密切相关.然而人体血液中CTCs的含量非常低,通常来说仅有0~10个/mL,因此在开展临床血液样本中CTCs的检测前,往往需要对样本进行前处理,以实现CTCs的分离和富集.微流控芯片技术凭借样...  相似文献   

3.
We use a mesoscopic simulation technique to study the transport of polymers in dilute solution flowing through a cylindrical tube. The simulations use an explicit solvent model to include all the relevant hydrodynamic couplings and a coarse grained ideal chain model for the polymers (appropriate for systems near the theta temperature). For the interactions between the solvent and the tube wall we use a novel method that ensures continuity of the stress at the interface. We show that the results for the polymer drift velocity are independent of the degree of coarse graining. Further, for the case where the size of the chains is small but not negligible compared to the tube radius, our results are in excellent agreement with experiment. However, they also show that in this regime, the "accelerated" drift, relative to the average solvent flow velocity, is described by the steric effect of the tube wall excluding the polymer center of mass from sampling the full cross section of the tube. Hydrodynamic interactions have a negligible influence in this regime. Consequently, the agreement between experiment and theories that approximates the former but includes the latter is fortunate. When the undisturbed polymer radius approaches or exceeds the tube radius, the hydrodynamic interactions do have a significant effect. They reduce the drift velocity, in qualitative agreement with theoretical predictions. The accelerated drift still approaches the maximum value, one would expect based on a Poiseuille flow but more slowly than if one neglects hydrodynamics. Finally, we propose an empirical fit that accurately describes data in the intermediate regime.  相似文献   

4.
Guan YX  Xu ZR  Dai J  Fang ZL 《Talanta》2006,68(4):1384-1389
The performance of a micropump operating on evaporation and capillary effects, developed for microfluidic (lab-on-a-chip) systems, was studied employing it as the fluid drive in a microfluidic flow injection (FI) system, with chemiluminescence (CL) detection. The micropump featured simple structure, small dimensions, low fabrication cost and stable and adjustable flow-rates during long working periods. Using a micropump with 6.6 cm2 evaporation area, with the ambient temperature and relative humidity fluctuating within 2 h in the ranges 20-21 °C and 30-32%, respectively, an average flow-rate of 3.02 μL/min was obtained, with a precision better than 1.2% R.S.D. (n = 61). When applied to the microchip FI-CL system using the luminol/hexacyanoferrate/H2O2 reaction, a precision of 1.4% R.S.D. (n = 11) was obtained for luminol at a sampling frequency of 30 h−1.  相似文献   

5.
Park JM  Anderson PD 《Lab on a chip》2012,12(15):2672-2677
To predict double-emulsion formation in a capillary microfluidic device, a ternary diffuse-interface model is presented. The formation of double emulsions involves complex interfacial phenomena of a three-phase fluid system, where each component can have different physical properties. We use the Navier-Stokes/Cahn-Hilliard model for a general ternary system, where the hydrodynamics is coupled with the thermodynamics of the phase field variables. Our model predicts important features of the double-emulsion formation which was observed experimentally by Utada et al. [Utada et al., Science, 2005, 308, 537]. In particular, our model predicts both the dripping and jetting regimes as well as the transition between those two regimes by changing the flow rate conditions. We also demonstrate that a double emulsion having multiple inner drops can be formed when the outer interface is more stable than the inner interface.  相似文献   

6.
An improved automated continuous sample introduction system for microfluidic capillary electrophoresis (CE) is described. A sample plate was designed into gear-shaped and was fixed onto the shaft of a step motor. Twenty slotted reservoirs for containing samples and working electrolytes were fabricated on the “gear tooth” of the plate. A single 7.5-cm long Teflon AF-coated silica capillary serves as separation channel, sampling probe, as well as liquid-core waveguide (LCW) for light transmission. Platinum layer deposited on the capillary tip serves as the electrode. Automated continuous sample introduction was achieved by scanning the capillary tip through the slots of reservoirs. The sample was introduced into capillary and separated immediately in the capillary with only about 2-nL gross sample consumption. The laser-induced fluorescence (LIF) method with LCW technique was used for detecting fluorescein isothiocyanate (FITC)-labeled amino acids. With electric-field strength of 320 V/cm for injection and separation, and 1.0-s sample injection time, a mixture of FITC-labeled arginine and leucine was separated with a throughput of 60/h and a carryover of 2.7%.  相似文献   

7.
In this work, we demonstrate a rapid protocol to address one of the major barriers that exists in the fabrication of chip devices, creating the micron-sized structures in the substrate material. This approach makes it possible to design, produce, and fabricate a microfluidic system with channel features >10 microm in poly(dimethylsiloxane)(PDMS) in under 8 hours utilizing instrumentation common to most machine shops. The procedure involves the creation of a master template with negative features, using high precision machining. This master is then employed to create an acrylic mold that is used in the final fabrication step to cast channel structures into the PDMS substrate. The performance of the microfluidic system prepared using this fabrication procedure is evaluated by constructing a miniaturized capillary gel electrophoresis (micro-CGE) system for the analysis of DNA fragments. Agarose is utilized as the sieving medium in the micro-CGE device and is shown to give reproducible (RSD (n= 34) approximately 5.0%) results for about 34 individual separations without replenishing the gel. To demonstrate the functionality of the micro-CGE device, a DNA restriction ladder (spanning 26-700 base pairs) and DNA fragments generated by PCR are separated and detected with laser-induced fluorescence (LIF). The microchip is shown to achieve a separation efficiency of 2.53 x 10(5) plates m(-1).  相似文献   

8.
This research has been conducted to study extraction of an anionic dye, Alizarin Red S (ARS), from the aqueous phase into the organic phase in a T-junction microchannel. The organic phase included Aliquat 336 and 1-octanol. Equal volumetric flow rates of aqueous and organic phases were adjusted in all the experiments. Designing the experiments and analyzing of the parameters that affect the extraction percentage of ARS were carried out using response surface methodology. The parameters were feed pH, feed concentration, extractant concentration and flow rate of aqueous and organic phases. The maximum extraction percentage of 98.7 was obtained at the feed pH of 3, feed concentration of 5000 mg L?1, extractant concentration of 4 vol.% and flow rate of 2.5 mL min?1. Under the optimum conditions obtained from the experimental design analysis, ARS extraction was performed in a batch system, too. The two-phase contact times to reach the extraction percentage of 98.7 in the microchannel and batch system were 2.4 s and 5.5 min, respectively.  相似文献   

9.
In this work, we demonstrate a two-layer microfluidic system capable of spatially selective delivery of drugs and other reagents under low shear stress. Loading occurs by hydrodynamically focusing a reagent stream over a particular region of the cell culture. The system consisted of a cell culture chamber and fluid flow channel, which were located in different layers to reduce shear stress on cells. Cells in the center of the culture chamber were exposed to parallel streams of laminar flow, which allowed fast changes to be made to the cellular environment. The shear force was reduced to 2.7 dyn cm−2 in the two-layer device (vs. 6.0 dyn cm−2 in a one-layer device). Cells in the side of the culture chamber were exposed to the side streams of buffer; the shear force was further reduced to a greater extent since the sides of the culture chamber were separated from the main fluid path. The channel shape and flow rate of the multiple streams were optimized for spatially controlled reagent delivery. The boundaries between streams were well controlled at a flow rate of 0.1 mL h−1, which was optimized for all streams. We demonstrated multi-reagent delivery to different regions of the same culture well, as well as selective treatment of cancer cells with a built in control group in the same well. In the case of apoptosis induction using staurosporine, 10% of cells remained viable after 24 h of exposure. Cells in the same chamber, but not exposed to staurosporine, had a viability of 90%. This chip allows dynamic observation of cellular behavior immediately after drug delivery, as well as long-term drug treatment with the benefit of large cell numbers, device simplicity, and low shear stress.  相似文献   

10.
An automatic, rapid and continuous on-line derivatization system coupled to microfluidic capillary electrophoresis (CE) for the determination of amino acids using o-phthaldialdehyde/N-acetyl-l-cysteine (OPA/NAC) as the derivative agents has been developed. By on-line derivatization, amino acids were automatically and reproducibly converted to the UV-absorbing derivatives, which were separated by capillary zone electrophoresis (CZE). Optimization of derivatization and separation condition was carried out to achieve both good sensitivity and separation efficiency. The separation could be achieved within 4 min and sample throughput rate can reach up to 16 h−1. The repeatability (defined as relative standard deviation, R.S.D.) was 2.56, 2.85, 3.24 and 3.60% with peak area evaluation and 2.93, 3.12, 4.20 and 4.91% with peak height evaluation for arginine (Arg), phenylalanine (Phe), serine (Ser) and glycine (Gly), respectively. The limits of detection (S/N=3) were 10.46, 13.14, 34.39 and 44.79 μmol/l for Arg, Phe, Ser and Gly, respectively. Major advantages of the proposed method include improved precision and efficient automation of the derivatization by the FI system and the enhanced sampling frequencies by the combined FI-CE system.  相似文献   

11.
The use of liposomes as coating materials in capillary electrophoresis has recently emerged as an important and popular research area. There are three preparation methods that are commonly used for coating capillaries with liposomes, namely physical adsorption, avidin–biotin binding and covalent coupling. Herein, the three different coating methods were compared, and the liposome-coated capillaries prepared by these methods were evaluated by studying systematically their EOF characterization and performance (repeatability, reproducibility and lifetime). The amount of immobilized phospholipids and the interactions between liposome or phospholipid membrane and neutral compounds for the liposome-coated capillaries prepared by these methods were also investigated in detail. Finally, the merits and disadvantages for each coating method were reviewed.  相似文献   

12.
Traffic of leukocytes in microvascular networks (particularly through arteriolar bifurcations and venular convergences) affects the dynamics of capillary blood flow, initiation of leukocyte adhesion during inflammation, and localization and development of atherosclerotic plaques in vivo. Recently, a growing research effort has been focused on fabricating microvascular networks comprising artificial vessels with more realistic, rounded cross-sections. This paper investigated the impact of the cross-sectional geometry of microchannels on the traffic of leukocytes flowing with human whole blood through a non-symmetrical bifurcation that consisted of a 50 μm mother channel bifurcating into 30 μm and 50 μm daughter branches. Two versions of the same bifurcation comprising microchannels with rectangular and rounded cross-sections were fabricated using conventional multi-layer photolithography to produce rectangular microchannles that were then rounded in situ using a recently developed method of liquid PDMS/air bubble injection. For microchannels with rounded cross-sections, about two-thirds of marginated leukocytes traveling along a path in the top plane of the bifurcation entered the smallest 30 μm daughter branch. This distribution was reversed in microchannels with rectangular cross-sections--the majority of leukocytes traveling along a similar path continued to follow the 50 μm microchannels after the bifurcation. This dramatic difference in the distribution of leukocyte traffic among the branches of the bifurcation can be explained by preferential margination of leukocytes towards the corners of the 50 μm mother microchannels with rectangular cross-sections, and by the additional hindrance to leukocyte entry created by the sharp transition from the 50 μm mother microchannel to the 30 μm daughter branch at the intersection. The results of this study suggest that the trajectories of marginated leukocytes passing through non-symmetrical bifurcations are significantly affected by the cross-sectional geometry of microchannels and emphasize the importance of using microfludic systems with geometrical configurations closely matching physiological configurations when modeling the dynamics of whole blood flow in the microcirculation.  相似文献   

13.
Swelling of the polyimide coating of fused-silica capillaries in acetonitrile-containing buffers was found to be the reason for several problems in capillary electrophoresis (CE) and capillary electrochromatography (CEC). Scanning electron microscopy photographs of the ends of raw fused-silica tubing showed that the coating becomes soft and increases its volume after longer contact with such buffers. As a consequence, separation efficiency can deteriorate, the capillary ends can clog or break off. To prevent swelling of the polyimide coating, fused-silica capillaries used in CE or CEC were heated at 300 degrees C for a longer period of time which improved their long-term stability in comparison to raw fused-silica tubing.  相似文献   

14.
The zebrafish embryo is a small, cheap, whole-animal model which may replace rodents in some areas of research. Unfortunately, zebrafish embryos are commonly cultured in microtitre plates using cell-culture protocols with static buffer replacement. Such protocols are highly invasive, consume large quantities of reagents and do not readily permit high-quality imaging. Zebrafish and rodent embryos have previously been cultured in static microfluidic drops, and zebrafish embryos have also been raised in a prototype polydimethylsiloxane setup in a Petri dish. Other than this, no animal embryo has ever been shown to undergo embryonic development in a microfluidic flow-through system. We have developed and prototyped a specialized lab-on-a-chip made from bonded layers of borosilicate glass. We find that zebrafish embryos can develop in the chip for 5 days, with continuous buffer flow at pressures of 0.005-0.04 MPa. Phenotypic effects were seen, but these were scored subjectively as 'minor'. Survival rates of 100% could be reached with buffer flows of 2 μL per well per min. High-quality imaging was possible. An acute ethanol exposure test in the chip replicated the same assay performed in microtitre plates. More than 100 embryos could be cultured in an area, excluding infrastructure, smaller than a credit card. We discuss how biochip technology, coupled with zebrafish larvae, could allow biological research to be conducted in massive, parallel experiments, at high speed and low cost.  相似文献   

15.
In this paper, we describe an amperometric-type enzymeless glucose sensing system based on a nanoporous platinum (Pt) electrode embedded in a microfluidic chip. This microchip system is comprised of a microfluidic transport channel network and a miniaturized electrochemical cell for nonenzymatic glucose sensing. Sample and buffer solutions were transferred to the cell by programmed electroosmotic flow (EOF). A nanoporous Pt electrode with the roughness factor of 200.6 was utilized to determine glucose concentrations in phosphate buffered saline (PBS) by the direct oxidation of glucose, without any separation process. The sensitivity of the developed system is 1.65 microA cm-2 mM-1 in the glucose concentration range from 1-10 mM in PBS.  相似文献   

16.
Zhang T  Fang Q  Wang SL  Qin LF  Wang P  Wu ZY  Fang ZL 《Talanta》2005,68(1):19-24
The signal-to-noise level of light emitting diode (LED) fluorimetry using a liquid-core-waveguide (LCW)-based microfluidic capillary electrophoresis system was significantly enhanced using a synchronized dual wavelength modulation (SDWM) approach. A blue LED was used as excitation source and a red LED as reference source for background-noise compensation in a microfluidic capillary electrophoresis (CE) system. A Teflon AF-coated silica capillary served as both the separation channel and LCW for light transfer, and blue and red LEDs were used as excitation and reference sources, respectively, both radially illuminating the detection point of the separation channel. The two LEDs were synchronously modulated at the same frequency, but with 180°-phase shift, alternatingly driven by a same constant current source. The LCW transferred the fluorescence emission, as well as the excitation and reference lights that strayed through the optical system to a photomultiplier tube; a lock-in amplifier demodulated the combined signal, significantly reducing its noise level. To test the system, fluorescein isothiocyanate (FITC)-labeled amino acids were separated by capillary electrophoresis and detected by SDWM and single wavelength modulation, respectively. Five-fold improvement in S/N ratio was achieved by dual wavelength modulation, compared with single wavelength modulation; and over 100-fold improvement in S/N ratio was achieved compared with a similar LCW-CE system reported previously using non-modulated LED excitation. A detection limit (S/N = 3) of 10 nM FITC-labeled arginine was obtained in this work. The effects of modulation frequency on S/N level and on the rejection of noise caused by LED-driver current and detector were also studied.  相似文献   

17.
The temperature variation of electroosmotic mobility corrected for the effects of Joule heating (muEOF0) was employed to investigate the variation of the zeta-potential (zeta) with temperature in fused-silica capillaries. Experimentally determined values for zeta increased at 0.39% per degrees C, a rate that is about four to five times smaller than reported previously. Experimentally determined values of zeta were directly proportional to the absolute temperature although values were also influenced slightly by changes to the dielectric constant. It was found that the effective charge density at the inner surface of the capillary was independent of temperature.  相似文献   

18.
杜晶辉  刘旭  徐小平 《色谱》2014,32(1):7-12
近年来,循环肿瘤细胞(CTCs)研究得到了越来越多的关注,许多研究报告已经证实其在肿瘤转移的早期诊断、治疗方案选择、个体化治疗及探索肿瘤转移机制等方面具有潜在的价值,然而CTCs在循环系统中的含量极低,这成为限制其临床相关应用的主要难点。微流控芯片技术具有低成本、快速、高通量及操作简单等优势,利用微流控芯片可实现CTCs的高速、高回收率、高纯度的分选富集,近年来得到广泛的关注。本文综述了近年来在微流控芯片内进行CTCs分选富集的研究并探讨了各种方法的优缺点,并在本研究团队的研究基础上进行了展望。  相似文献   

19.
JH Yeon  HR Ryu  M Chung  QP Hu  NL Jeon 《Lab on a chip》2012,12(16):2815-2822
This paper describes the in vitro formation and characterization of perfusable capillary networks made of human umbilical vein endothelial cells (HUVECs) in microfluidic devices (MFDs). Using this platform, an array of three-dimensional (3D) tubular capillaries of various dimensions (50-150 μm in diameter and 100-1600 μm in length) can be formed reproducibly. To generate connected blood vessels, MFDs were completely filled with fibrin gel and subsequently processed to selectively leave behind gel structures inside the bridge channels. Following gel solidification, HUVECs were coated along the gel walls, on opposite ends of the patterned 3D fibrin gel. After 3-4 days, HUVECs migrating into the fibrin gel from opposite ends fused with each other, spontaneously forming a connected vessel that expressed tight junction proteins (e.g., ZO-1), which are characteristic of post-capillary venules. With ready access to a perfusable capillary network, we demonstrated perfusion of the vessels and imaged red blood cells (RBCs) and beads flowing through them. The results were reproducible (~50% successful perfusable capillaries), consistent, and could be performed in a parallel manner (9 devices per well plate). Additionally, compatibility with high resolution live-cell microscopy and the possibility of incorporating other cell types makes this a unique experimental platform for investigating basic and applied aspects of angiogenesis, anastomosis, and vascular biology.  相似文献   

20.
Ji J  Zhao Y  Guo L  Liu B  Ji C  Yang P 《Lab on a chip》2012,12(7):1373-1377
A spherical liquid-liquid interface can be obtained by dispersing one liquid phase into another to form droplets, which will facilitate the two-phase reactions between the immiscible participating fluids. The phase transfer catalysts assembled at the droplet "wall" catalyze the reactions between the aqueous and organic phases. The study illustrates an interfacial synthetic approach which is ideal for the biphasic reaction by taking advantage of the droplet-based microdevice. The improved reaction efficiency can be attributed to the high surface-to-volume ratio and internal flow circulation in the droplets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号