首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and efficient method for the synthesis of ultrasmall Pd nanoclusters(NCs) has been developed. The as-obtained Pd NCs displayed uniform size with an average diameter of 1.8±0.2 nm. The ultrasmall Pd NCs and carbon nanotubes(CNTs)-supported Pd NCs also showed outstanding catalytic activity for nitrobenzene reduction and Suzuki coupling reactions. Notably, the reactions were conducted under mild conditions with high yield and selectivity.  相似文献   

2.
Noble metal nanocrystals (NCs) enclosed with high‐index facets hold a high catalytic activity thanks to the high density of low‐coordinated step atoms that they exposed on their surface. Shape‐control synthesis of the metal NCs with high‐index facets presents a big challenge owing to the high surface energy of the NCs, and the shape control for metal Rh is even more difficult because of its extraordinarily high surface energy in comparison with Pt, Pd, and Au. The successful synthesis is presented of tetrahexahedral Rh NCs (THH Rh NCs) enclosed by {830} high‐index facets through the dynamic oxygen adsorption/desorption mediated by square‐wave potential. The results demonstrate that the THH Rh NCs exhibit greatly enhanced catalytic activity over commercial Rh black catalyst for the electrooxidation of ethanol and CO.  相似文献   

3.
Polyoxometalates (POMs), as inorganic ligands, can endow metal nanocrystals (NCs) with unique reactivities on account of their characteristic redox properties. In the present work, we present a facile POM‐mediated one‐pot aqueous synthesis method for the production of single‐crystalline Pd NCs with controlled shapes and sizes. The POMs could function as both reducing and stabilizing agents in the formation of NCs, and thus gave a fine control over the nucleation and growth kinetics of NCs. The prepared POM‐stabilized Pd NCs exhibited excellent catalytic activity and stability for electrocatalytic (formic acid oxidation) and catalytic (Suzuki coupling) reactions compared to Pd NCs prepared without the POMs. This shows that the POMs play a pivotal role in determining the catalytic performance, as well as the growth, of NCs. We envision that the present approach can offer a convenient way to develop efficient NC‐based catalyst systems.  相似文献   

4.
表面结构控制和表面异种金属修饰是调控催化剂反应性的重要方法。因此,我们结合高指数晶面结构的高反应性与表面修饰异种金属,合成具有{730}高指数晶面的钯二十四面体纳米晶,并通过循环伏安扫描电沉积法得到Ru修饰的钯二十四面体纳米晶。电化学测试结果表明,低的Ru覆盖度(θ_(Ru)=0.08)可显著提高对碱性介质中甲醇电氧化的催化性能。电化学原位红外光谱结果表明,少量Ru的修饰没有减少CO的生成,而是促进了低电位下甲醇氧化成甲酸根。  相似文献   

5.
Control over composition and morphology of nanocrystals (NCs) is significant to develop advanced catalysts applicable to polymer electrolyte membrane fuel cells and further overcome the performance limitations. Here, we present a facile synthesis of Pd?Pt alloy ultrathin assembled nanosheets (UANs) by regulating the growth behavior of Pd?Pt nanostructures. Iodide ions supplied from KI play as capping agents for the {111} plane to promote 2‐dimensional (2D) growth of Pd and Pt, and the optimal concentrations of cetyltrimethylammonium chloride and ascorbic acid result in the generation of Pd?Pt alloy UANs in high yield. The prepared Pd?Pt alloy UANs exhibited the remarkable enhancement of the catalytic activity and stability toward ethanol oxidation reaction compared to irregular‐shaped Pd?Pt alloy NCs, commercial Pd/C, and commercial Pt/C. Our results confirm that the Pd?Pt alloy composition and ultrathin 2D morphology offer high accessible active sites and favorable electronic structure for enhancing electrocatalytic activity.  相似文献   

6.
Metallic nanocrystals (NCs) with well‐defined sizes and shapes represent a new family of model systems for establishing structure–function relationships in heterogeneous catalysis. Here in this study, we show that catalyst poisoning can be utilized as an efficient strategy for nanocrystals shape and composition control, as well as a way to tune the catalytic activity of catalysts. Lead species, a well‐known poison for noble‐metal catalysts, was investigated in the growth of Pd NCs. We discovered that Pb atoms can be incorporated into the lattice of Pd NCs and form Pd–Pb alloy NCs with tunable composition and crystal facets. As model catalysts, the alloy NCs with different compositions showed different selectivity in the semihydrogenation of phenylacetylene. Pd–Pb alloy NCs with better selectivity than that of the commercial Lindlar catalyst were discovered. This study exemplified that the poisoning effect in catalysis can be explored as efficient shape‐directing reagents in NC growth, and more importantly, as a strategy to tailor the performance of catalysts with high selectivity.  相似文献   

7.
Gold nanoclusters (phi = 1.3 nm) stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP NCs) readily oxidize benzylic alcohols to the corresponding aldehydes and/or carboxylic acids under ambient temperature in water. Kinetic measurement revealed that smaller Au:PVP NCs exhibit higher catalytic activity than larger (9.5 nm) homologues and, more surprisingly, than Pd:PVP NCs of comparable size (1.5 and 2.2 nm). On the basis of the marked difference in the kinetic isotope effect and activation energy between Au:PVP and Pd:PVP NCs, a reaction mechanism for alcohol oxidation catalyzed by Au:PVP NCs is proposed in which a superoxo-like molecular oxygen species adsorbed on the surface of the small Au NCs abstracts a hydrogen atom from the alkoxide.  相似文献   

8.
The shape-controlled synthesis of noble metal nanocrystals (NCs) bounded by high-index facets is a current research interest because the products have the potential of significantly improving the catalytic performance of NCs in industrially important reactions. This study reports a versatile method for synthesizing polyhedral NCs enclosed by a variety of high-index Pd facets. The method is based on the heteroepitaxial growth of Pd layers on concave trisoctahedral (TOH) gold NC seeds under careful control of the growth kinetics. Polyhedral Au@Pd NCs with three different classes of high-index facets, including concave TOH NCs with {hhl} facets, concave hexoctahedral (HOH) NCs with {hkl} facets, and tetrahexahedral (THH) NCs with {hk0} facets, can be formed in high yield. The Miller indices of NCs are also modifiable, and we have used the THH NCs as a demonstrative example. The catalytic activities of these NCs were evaluated by the structure-sensitive reaction of formic acid electro-oxidation. The results showed that the high-index facets are generally more active than the low-index facets. In summary, a seeded growth process based on concave high-index faceted monometallic TOH NC templates and careful control of the growth kinetics is a simple and effective strategy for the synthesis of noble metal NCs with high-index facets. It also offers tailorability of the surface structure in shape-controlled synthesis.  相似文献   

9.
贵金属Pd纳米晶体的催化性能与其表面结构有着密切联系。基于目前Pd多面体纳米晶体可控合成技术的发展,Pd纳米晶体催化性能的进一步优化及其在催化领域的应用前景依然广阔。本文主要阐述了关于Pd多面体纳米晶的制备及其作为电催化剂在燃料电池中应用的最新研究进展。在介绍纳米晶体的生长机理及其表面结构与晶体形状的关系之后,重点描述了Pd多面体纳米晶体常见的几种制备方法,概述了Pd多面体纳米晶体作为催化剂在燃料电池阴极和阳极中的应用。最后总结展望了Pd多面体纳米晶体作为催化剂的研究方向及其发展前景。  相似文献   

10.
A support-free heterogeneous Pd3Co nanostructured composite (NC), synthesized through a hydrothermal route, acted as an effective catalytic system in multivariate Heck-, Sonogashira-, and Suzuki-type coupling reactions of iodonium ylides. The XPS analysis of the bimetallic Pd3Co NCs confirmed the elemental composition as 75 % palladium and 25 % cobalt. Furthermore, high-resolution (HR) TEM analysis confirmed the spherical morphology of the Pd3Co bimetallic nanoparticles. The average diameter of the NCs is 14.8 nm. The coupling reaction proceeded through the generation of α-iodoenones with simultaneous migration of the phenyl group, thereby giving a scaffold with higher atom economy. The heterogeneous Pd3Co NCs were recycled and reused without any significant change in catalytic ability for up to five reaction cycles. The high concentration of Pd and association of cobalt into the lattice of palladium appears to enhance its catalytic ability for the diverse coupling reactions in comparison with its monometallic counterparts as well as with bimetallic NCs with a comparatively lesser amount of Pd.  相似文献   

11.
Exploiting high‐performance and inexpensive electrocatalysts for methanol electro‐oxidation is conductive to promoting the commercial application of direct methanol fuel cells. Here, we present a facile synthesis of echinus‐like PdCu nanocrystals (NCs) via a one‐step and template‐free method. The echinus‐like PdCu NCs possess numerous straight and long branches which can provide abundant catalytic active sites. Owing to the novel nanoarchitecture and electronic effect of the PdCu alloy, the echinus‐like PdCu NCs display high electrocatalytic performance toward methanol oxidation reaction in an alkaline medium. The mass activity of echinus‐like PdCu NCs is 1202.1 mA mgPd?1, which is 3.7 times that of Pd/C catalysts. In addition, the echinus‐like structure, as a kind of three‐dimensional self‐supported nanoarchitecture, endows PdCu NCs with significantly enhanced stability and durability. Hence, the echinus‐like PdCu NCs hold prospect of being employed as electrocatalysts for direct alcohol fuel cells.  相似文献   

12.
Monodisperse sub-10 nm Rh nanocubes were synthesized with high selectivity (>85%) by a seedless polyol method. The {100} faces of the Rh NCs were effectively stabilized by chemically adsorbed Br- ions from trimethyl(tetradecyl)ammonium bromide (TTAB). This simple one-step polyol route can be readily applied to the preparation of Pt and Pd nanocubes. Moreover, the organic molecules of PVP and TTAB that encapsulated the Rh nanocubes did not prevent catalytic activity for pyrrole hydrogenation and CO oxidation.  相似文献   

13.
Tetrahexahedral Pt nanocrystals (THH Pt NCs) bounded by high-index facets possess a high density of active sites and display therefore a higher catalytic activity in comparison with those enclosed by low-index facets. In the current communication, we report, for the first time, the decoration of THH Pt NC surfaces by using Bi adatoms and have demonstrated that the catalytic activity of the Bi decorated THH Pt NCs toward HCOOH electrooxidation has been drastically enhanced in comparison with bare THH Pt NCs. It has also been revealed that the catalytic activity of Bi decorated THH Pt NCs for all coverages investigated always exhibits a higher catalytic activity that is about double that of Bi decorated Pt nanospheres. The study is of great importance regarding both fundamentals and applications.  相似文献   

14.
Metal nanoclusters (NCs) with diameter below 2 nm are promising catalysts in oxygen reduction reactions (ORR). However, the high surface energy of ultra‐small clusters leads to structural instability, shedding doubt on practical applications. Herein, we demonstrate a self‐assembly method to improve the durability of catalytic metal NCs, employing copper NCs capped by 1‐dodecanethiol (DT) to form free‐standing ribbons in colloidal solution. By tuning the cooperation between the dipolar attraction between Cu NCs and the van der Waals attraction between DT, the thickness of ribbons is adjusted to a single NC scale. Such free‐standing ribbons exhibit excellent catalytic activity and durability in ORR.  相似文献   

15.
We first studied the reactivity of H2O vapor in metal–organic frameworks (MOFs) with Pt nanocrystals (NCs) through the water–gas shift (WGS) reaction. A water‐stable MOF, UiO‐66, serves as a highly effective support material for the WGS reaction compared with ZrO2. The origin of the high catalytic performance was investigated using in situ IR spectroscopy. In addition, from a comparison of the catalytic activities of Pt on UiO‐66, where Pt NCs are located on the surface of UiO‐66 and Pt@UiO‐66, where Pt NCs are coated with UiO‐66, we found that the competitive effects of H2O condensation and diffusion in the UiO‐66 play important roles in the catalytic activity of Pt NCs. A thinner UiO‐66 coating further enhanced the WGS reaction activity of Pt NCs by minimizing the negative effect of slow H2O diffusion in UiO‐66.  相似文献   

16.
平均粒径为2–10 nm的聚合物稳定的Au纳米簇(NCs)表现出独特的催化性能。多个研究表明,影响聚合物稳定的Au NCs催化活性的主要因素为: Au NC尺寸的控制、聚合物的选择以及反应条件的优化。这是由于聚合物稳定的Au NCs在多个催化反应中表现出明显的尺寸效应,其催化活性也因所采用的聚合物和反应条件的不同而不同。为了阐明影响聚合物稳定的Au NCs催化活性的内在原因,众多研究者关注于聚合物稳定的Au NCs催化中的理论计算与实验的相互影响。本文主要总结了聚合物稳定的Au NCs中这种相互影响的研究进展。  相似文献   

17.
We report on hexagonal close-packed (hcp) palladium (Pd)–boron (B) nanocrystals (NCs) by heavy B doping into face-centered cubic (fcc) Pd NCs. Scanning transmission electron microscopy–electron energy loss spectroscopy and synchrotron powder X-ray diffraction measurements demonstrated that the B atoms are homogeneously distributed inside the hcp Pd lattice. The large paramagnetic susceptibility of Pd is significantly suppressed in Pd–B NCs in good agreement with the reduction of density of states at Fermi energy suggested by X-ray absorption near-edge structure and theoretical calculations.  相似文献   

18.
Earth‐abundant first‐row transition‐metal nanoclusters (NCs) have been extensively investigated as catalysts. However, their catalytic activity is relatively low compared with noble metal NCs. Enhanced catalytic activity of cobalt NCs can be achieved by encapsulating Co NCs in soluble porous coordination cages (PCCs). Two cages, PCC‐2a and 2b, possess almost identical cavity in shape and size, while PCC‐2a has five times more net charges than PCC‐2b. Co2+ cations were accumulated in PCC‐2a and reduced to ultra‐small Co NCs in situ, while for PCC‐2b, only bulky Co particles were formed. As a result, Co NCs@PCC‐2a accomplished the highest catalytic activity in the hydrolysis of ammonium borane among all the first‐row transition‐metals NCs. Based on these results, it is envisioned that confining in the charged porous coordination cage could be a novel route for the synthesis of ultra‐small NCs with extraordinary properties.  相似文献   

19.
The finding of new metal alloyed nanocrystals (NCs) with high catalytic activity and low cost to replace PtRu NCs is a critical step toward the commercialization of fuel cells. In this work, a simple cation replacement reaction was utilized to synthesize a new type of ternary Fe(1-x)PtRu(x) NCs from binary FePt NCs. The detailed structural transformation from binary FePt NCs to ternary Fe(1-x)PtRu(x) NCs was analyzed by X-ray absorption spectroscopy (XAS). Ternary Fe(35)Pt(40)Ru(25), Fe(31)Pt(40)Ru(29), and Fe(17)Pt(40)Ru(43) NCs exhibit superior catalytic ability to withstand CO poisoning in methanol oxidation reaction (MOR) than do binary NCs (FePt and J-M PtRu). Also, the Fe(31)Pt(40)Ru(29) NCs had the highest alloying extent and the lowest onset potential among the ternary NCs. Furthermore, the origin for the superior CO resistance of ternary Fe(1-x)PtRu(x) NCs was investigated by determining the adsorption energy of CO on the NCs' surfaces and the charge transfer from Fe/Ru to Pt using a simulation based on density functional theory. The simulation results suggested that by introducing a new metal into binary PtRu/PtFe NCs, the anti-CO poisoning ability of ternary Fe(1-x)PtRu(x) NCs was greatly enhanced because the bonding of CO-Pt on the NCs' surface was weakened. Overall, our experimental and simulation results have indicated a simple route for the discovery of new metal alloyed catalysts with superior anti-CO poisoning ability and low usage of Pt and Ru for fuel cell applications.  相似文献   

20.
镀Pd的GC电极上HCOOH的电催化氧化   总被引:4,自引:0,他引:4  
周全  张存中  陆晓林  吴仲达 《电化学》2000,6(3):329-334
在玻璃碳 (GC)基底上电沉积Pd ,应用SEM观测Pd沉积层的表面形貌 ,用循环伏安法研究了Pd/GC电极上HCOOH在HClO4溶液中的电氧化行为 .结果表明 ,Pd的电沉积条件影响电极的催化性能 .在高电流密度下制得的Pd/GC电极对HCOOH的电氧化具有比纯Pd电极更高的催化活性 .当电极表面生成PdO时 ,HCOOH被电氧化的活性很低 ,而在PdO还原后生成的Pd表面 ,HCOOH的电氧化显示极高的活性 .本文还讨论了Pd(Ⅱ )离子对HCOOH电氧化过程的影响 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号