首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CE of phytosiderophores and related metal species in plants   总被引:1,自引:0,他引:1  
Phytosiderophores (PS) and the closely related substance nicotianamine (NA) are key substances in metal uptake into graminaceous plants. Here, the CE separation of these substances and related metal species is demonstrated. In particular, the three PS 2'-deoxymugineic acid (DMA), mugineic acid (MA), and 3-epi-hydroxymugineic acid (epi-HMA), and NA, are separated using MES/Tris buffer at pH 7.3. Moreover, three Fe(III) species of the different PS are separated without any stability problems, which are often present in chromatographic analyses. Also divalent metal species of Cu, Ni, and Zn with the ligands DMA and NA are separated with the same method. By using a special, zwitterionic CE capillary, even the separation of two isomeric Fe(III) chelates with the ligand ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid (EDDHA) is possible (i.e., meso-Fe(III)-EDDHA and rac-Fe(III)-EDDHA), and for fast separations of NA and respective divalent and trivalent metal species, a polymer CE microchip with suppressed EOF is described. The proposed CE method is applicable to real plant samples, and enables to detect changes of metal species (Cu-DMA, Ni-NA), which are directly correlated to biological processes.  相似文献   

2.
Iron chelates such as ethylenediamine-N,N'-bis(2-hydroxyphenyl)acetic acid (EDDHA) and their analogues are the most efficient soil fertilizers to treat iron chlorosis in plants growing in calcareous soils. EDDHA, EDDH4MA (ethylenediamine-N,N'-bis(2-hydroxy-4-methylphenyl)acetic acid), and EDDCHA (ethylenediamine-N,N'-bis(2-hydroxy-5-carboxyphenyl)acetic acid) are allowed by the European directive, but also EDDHSA (ethylenediamine-N,N'-bis(2-hydroxy-5-sulfonylphenyl)acetic acid) and EDDH5MA (ethylenediamine-N,N'-bis(2-hydroxy-5-methylphenyl)acetic acid) are present in several commercial iron chelates. In this study, these chelating agents as well as p,p-EDDHA (ethylenediamine-N,N'-bis(4-hydroxyphenyl)acetic acid) and EDDMtxA (ethylenediamine-N,N'-bis(2-metoxyphenyl)acetic acid) have been obtained following a new synthetic pathway. Their chemical behavior has been studied to predict the effect of the substituents in the benzene ring on their efficacy as iron fertilizers for soils above pH 7. The purity of the chelating agents has been determined using a novel methodology through spectrophotometric titration at 480 nm with Fe(3+) as titrant to evaluate the inorganic impurities. The protonation constants were determined by both spectrophotometric and potentiometric methods, and Ca(2+) and Mg(2+) stability constants were determined from potentiometric titrations. To establish the Fe(3+) and Cu(2+) stability constants, a new spectrophotometric method has been developed, and the results were compared with those reported in the literature for EDDHA and EDDHMA and their meso- and rac-isomers. pM values have been also determined to provide a comparable basis to establish the relative chelating ability of these ligands. The purity obtained for the ligands is higher than 87% in all cases and is comparable with that obtained by (1)H NMR. No significant differences have been found among ligands when their protonation and stability constants were compared. As expected, no Fe(3+) complexation was observed for p,p-EDDHA and EDDMtxA. The presence of sulfonium groups in EDDHSA produces an increase in acidity that affects their protonation and stability constants, although the pFe values suggest that EDDHSA could be also effective to correct iron chlorosis in plants.  相似文献   

3.
The effect of the length and the structure of the tether on the chelating ability of EDDHA-like chelates have not been established. In this work, PDDHA (propylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid), BDDHA (butylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid) and XDDHA (p-xylylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid) have been obtained and their chemical behaviour has been studied and compared with that of EDDHA following our methodology. The purity of the chelating agents, and their protonation, Ca(II), Mg(II), Fe(III) and Cu(II) stability constants and pM values have been determined. The stability constants and pM values indicate that EDDHA forms the most stable chelates followed by PDDHA. However, the differences among the pFe values are small when a nutrient solution is used, and in these conditions the XDDHA/Fe(III) chelate is the most stable. The results obtained in this work indicate that all the chelating agents studied can be used as iron chlorosis correctors and they can be applied to soil/plant systems.  相似文献   

4.
The complexes of Fe(III), Co(III), Mn(III), Al(III), Cu(II), Ni(II), Cd(II) and Zn(II) with N,N'-bis(hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) were separated by ion exchange in different modes: ion chromatography (IC) and ion electrokinetic chromatography (IEKC). In column IC these complexes were separated on an IonPac AS4a anion-exchange column (Dionex, USA). Parameters of the background electrolyte that were examined in IEKC mode include polymer, competing ion concentration and pH. The use of poly(diallyldimethylammonium chloride) (PDADMACl) as a modifier in IEKC provides separation selectivity only slightly different from that observed in IC on the IonPac AS4a column. Optimal separation conditions were found to be: 0.1 mM HBED, 50 mM PDADMAOH, 10 mM Na2 B4 O7, pH adjusted to 10 with acetic acid. The use of an aromatic ligand allowed a 10-fold decrease in detection limits of metal ions in comparison with previously studied EDTA. A separation efficiency up to 400,000 theoretical plates was demonstrated for IEKC.  相似文献   

5.
The complex [Gd(L)(H2O)]3- (H(6)L =N,N'-bis(6-carboxy-2-pyridylmethyl)ethylenediamine-N,N'-methylenephosphonic acid) displays the highest water exchange rate ever measured for a Gd(III) chelate (k(298)(ex)= 8.8 x 10(8) s(-1)), which is attributed to the flexibility of the metal coordination environment.  相似文献   

6.
A divergent-flow isoelectric focusing (DF IEF) technique has been applied for the separation and preparative analysis of peptides. The parameters of the developed DF IEF device such as dimension and shape of the separation bed, selection of nonwoven material of the channel, and separation conditions were optimized. The DF IEF device was tested by the separation of a peptide mixture originating from the tryptic digestion of BSA, cytochrome c, and myoglobin. The pH gradient of DF IEF was created by the autofocusing of tryptic peptides themselves without any addition of carrier ampholytes. The focusing process was monitored visually using colored pI markers, and the obtained fractions were analyzed by RP-HPLC and ESI/TOF-MS. DF IEF operating in the autofocusing mode provides an efficient preseparation of peptides, which is comparable with a commercially available MicroRotofor multicompartment electrolyzer and significantly improves sequence coverage of analyzed proteins. The potential of the DF IEF device as an efficient tool for the preparative scale separations was demonstrated by the isolation of caseinomacropeptide (CMP) from a crude whey solution.  相似文献   

7.
N,N'-ethylenedi-L-cysteine (EC) and its indium(III) and gallium(III) complexes have been synthesized and characterized. The crystal structures of the ligand and the complexes have been determined by single-crystal X-ray diffraction. EC.2HBr.2H(2)O (C(8)H(22)Br(2)N(2)O(6)S(2)) crystallizes in the orthorhombic space group P2(1)2(1)2 with a = 12.776(3) ?, b = 13.735(2) ?, c = 5.1340 (10) ?, Z = 2, and V = 900.9(3) ?(3). The complexes Na[M(III)EC].2H(2)O (C(8)H(16)MN(2)O(6)S(2)Na) are isostructural for M = In and Ga, crystallizing in the tetragonal space group P4(2)2(1)2 with the following lattice constants for In, (Ga): a = 10.068(2) ?, (9.802(2) ?), b = 10.068(2) ?, (9.802(2) ?), c = 14.932(2) ?, (15.170(11) ?), Z = 4 (4), and V = 1513.6(5) ?(3), (1457.5(11) ?(3)). In both metal complexes, the metal atoms (In and Ga) are coordinated by six donor atoms (N(2)S(2)O(2)) in distorted octahedral coordination geometries in which two sulfur atoms and two nitrogen atoms occupy the equatorial positions, and the axial positions are occupied by two oxygen atoms of two carboxylate groups. The structures of the complexes previously predicted by molecular mechanics are compared with the crystal structures of the Ga(III) and In(III) complexes obtained experimentally. In contrast to the oxygen donors in phenolate-containing ligands, such as 1,2-ethylenebis((o-hydroxyphenyl)glycine) (EHPG) and N,N'-bis(o-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED), the thiolate donors of EC enhances affinity for In(III) relative to Ga(III). The following stability sequence has been obtained: In(III) > Ga(III) > Ni(II) > Zn(II) > Cd(II) > Pb(II) > Co(II). Evidence was also obtained for several protonated and hydroxo species of the complexes of both divalent and trivalent metals, where the corresponding protonation constants (K(MHL)) decrease with increasing stability of the chelate, ML(n)(-)(4), where M(n)()(+) represent the metal ion.  相似文献   

8.
双冠醚与较大的金属离子能形成夹心型络合物,与相应的单冠醚相比较,它们具有更好的络合性和选择性。但双冠醚一般不溶于水中。本文用EDTA二酐与4'-氨基苯并-12-冠-4及4'-氨基苯并-15-冠-5反应,制得了两种在桥键上带有两个羧基的酰胺型双冠醚Ⅰ和Ⅱ。Ⅰ、Ⅱ未见报导,均能溶于水,这就可以象其它水溶性单冠醚一样,在水溶液中研究它们的络合行为。  相似文献   

9.
A preparative scale free‐flow IEF device is developed and characterized with the aim of addressing needs of molecular biologists working with protein samples on the milligrams and milliliters scale. A triangular‐shape separation channel facilitates the establishment of the pH gradient with a corresponding increase in separation efficiency and decrease in focusing time compared with that in a regular rectangular channel. Functionalized, ion‐permeable poly(acrylamide) gel membranes are sandwiched between PDMS and glass layers to both isolate the electrode buffers from the central separation channel and also to selectively adjust the voltage efficiency across the separation channel to achieve high electric field separation. The 50×70 mm device is fabricated by soft lithography and has 24 outlets evenly spaced across a pH gradient between pH 4 and 10. This preparative free‐flow IEF system is investigated and optimized for both aqueous and denaturing conditions with respect to the electric field and potential efficiency and with consideration of Joule‐heating removal. Energy distribution across the functionalized polyacrylamide gel is investigated and controlled to adjust the potential efficiency between 15 and 80% across the triangular separation channel. The device is able to achieve constant electric fields high as 370±20 V/cm through the entire triangular channel given the separation voltage of 1800 V, enabling separation of five fluorescent pI markers as a demonstration example.  相似文献   

10.
Alpha-1-acid glycoprotein (AGP) is a protein that exists in different forms, which is due to variations in the amino acid sequence and/or in the glycosidic part of the protein. These differences confer to these forms, among other characteristics, diverse pIs. Changes in these forms of AGP have been correlated to modifications of the pathophysiological conditions of the individuals. One of the analytical techniques employed for their study has been IEF performed in slab gels. CIEF method with hydrodynamic and chemical mobilization, involving an isotachophoretic process, is developed in this work to separate up to 12 bands of forms of standard AGP, which is proposed as a more reproducible, quantitative, less sample-consuming, and more automated one than conventional IEF. The challenge of this work has been the development of a CIEF method for the separation of bands of a very acidic protein (pI range: 1.8-3.8) in a capillary. Intraday RSD values < or = 1.7% have been achieved for the relative migration time of the AGP bands to that of an internal standard. For intraday area precision, RSD (%) in the range of 2.70-22.71% for AGP zones accounting for more than 10% of total area of AGP sample has been obtained. As a proof of the potential of the methodology proposed, an AGP sample purified from a pool of sera of patients suffering from ovary cancer is analyzed by CIEF.  相似文献   

11.
A high performance liquid chromatography system, a sample preparation device, and an imaged capillary IEF (CIEF) instrument are integrated and multiplexed on-line. The system is equivalent to two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), by transferring the principle of 2-D separation to the capillary format. High performance liquid chromatography (HPLC) provides protein separation based on size using a gel filtration chromatography (GFC) column. Each eluted protein is sampled and directed to a novel microdialysis hollow fiber membrane device, where simultaneous desalting and carrier ampholyte mixing occurs. The sample is then driven to the separation column in an on-line fashion, where CIEF takes place. The fluidic technology used by our 2-D system leads to natural automation. The coupling of the two techniques is simple. This is attributed to high speed and efficiency of the sample preparation device that acts as an interface between the two systems, as well as the speed and simplicity of our whole column absorption imaged CIEF instrument. To demonstrate the feasibility of this approach, the separation of a mixture of two model proteins is studied. Sample preparation and CIEF were complete in just 4-5 min, for each of the eluted proteins. Total analysis time is about 24 min. Three-dimensional data representations are constructed. Challenges and methods to further improve our instrument are discussed, and the design of an improved horseshoe-shaped sample preparation sample loop membrane interface is presented and characterized.  相似文献   

12.
Jin Y  Luo G  Oka T  Manabe T 《Electrophoresis》2002,23(19):3385-3391
Synthetic UV-detectable peptide pI markers were used to estimate isoelectric point (pI) values of proteins separated by capillary isoelectric focusing (CIEF) followed by cathodic mobilization in the absence of denaturing agents. The pI calculation and quantitative analysis of purified proteins showed the feasibility of these peptides as pI markers and internal standards in CIEF separation of proteins. Estimation of pI values of major proteins in human plasma was performed using the peptide pI markers, and the values were compared with those previously obtained by gel isoelectric focusing (IEF). Sera of immunoglobulin G (IgG) myeloma patients, which showed characteristic peaks of myeloma IgG in their CIEF patterns, were also subjected to the analysis and the pI values of the myeloma proteins have been estimated.  相似文献   

13.
The transitional isoelectric focusing (IEF) process (the course of pH gradient formation by carrier ampholytes (CAs) and the correlation of the focusing time with CA concentration) were investigated using a whole-column detection capillary isoelectric focusing (CIEF) system. The transitional double-peak phenomenon in IEF was explained as a result of migration of protons from the anodic end and hydroxyl ions from the cathodic end into the separation channel and the higher electric field at both acidic and basic sides of the separation channel. It was observed that focusing times increase logarithmically with CA concentration under a constant applied voltage. The correlation of focusing time with CA concentration was explained by the dependence of the charge-transfer rate on the amount of charged CAs within the separation channel during focusing.  相似文献   

14.
Sixteen peptides (trimers to hexamers) were designed for use as a set of pI markers for capillary isoelectric focusing (CIEF). Each peptide contains one tryptophan residue for detection by UV absorption and other amino acid residues having ionic side chains, which are responsible for focusing to its pI. The pIs of these peptides were determined by slab-gel IEF using commercial carrier ampholytes. The focused peptides in the gel were detected by absorption measurement at 280 nm using a scanning densitometer and the pH gradient was determined by measuring the pH of the gel using an oxidized metal membrane electrode. The pI values of the peptides ranged from 3.38 to 10.17. The obtained values agreed well with the predicted ones, which were calculated based on amino acid compositions, with root mean square differences of 0.15 pH unit. The peptides were detected at 280 nm as very sharp peaks when separated by CIEF. The pI values of some standard proteins were redetermined by CIEF by using this set of peptide pI markers and the values agreed closely with those reported previously. The sharp focusing, stability, high purity and high solubility of these synthetic pI markers should facilitate the profiling of a pH gradient in a capillary and the determination of the pI values of proteins.  相似文献   

15.
Chen J  Lee CS  Shen Y  Smith RD  Baehrecke EH 《Electrophoresis》2002,23(18):3143-3148
On-line combination of capillary isoelectric focusing (CIEF) with capillary reversed-phase liquid chromatography (CRPLC) is developed using a microinjector as the interface for performing two-dimensional (2-D) protein/peptide separations of complex protein mixtures. The focusing effect of CIEF not only contributes to a high-resolution protein/peptide separation, but also may permit the analysis of low-abundance proteins with a typical concentration factor of 50-100 times. The preparative capabilities of CIEF are much larger than most of capillary-based electrokinetic separation techniques since the entire capillary is initially filled with a solution containing proteins/peptides and carrier ampholytes for the creation of a pH gradient inside the capillary. The focused peptides which have a similar pI are coinjected into the second separation dimension and further resolved by their differences in hydrophobicity. The resolving power of combined CIEF-CRPLC system is demonstrated using the soluble fraction of Drosophila salivary glands taken from a period beginning before steroid-triggered programmed cell death and extending to its completion. The separation mechanisms of CIEF and CRPLC are completely orthogonal and the overall peak capacity is estimated to be around approximately 1800 over a run time of less than 8 h. Significant enhancement in the separation peak capacity can be realized by further increasing the number of CIEF fractions and/or slowing the solvent gradient in CRPLC, however, at the expense of overall analysis time. The results of our preliminary studies display significant differences in the separation profiles of peptide samples obtained from salivary glands of animals staged at the 6 and 12 h following puparium formation.  相似文献   

16.
The analytical separation of the indium and manganese complexes of three synthetic, meso-substituted, water-soluble porphyrins from their respective free bases in metallation reaction mixtures is described. The ligands tetra-3N-methylpyridyl porphyrin, tetra-4N-methylpyridyl porphyrin and tetra-N,N,N-trimethylanilinium porphyrin are complexed with In (III) and Mn (III) and are separated from residual free base by high-performance liquid chromatography (HPLC) in acidic conditions with gradient elution on ODS bonded stationary phase. Electrophoretic separation is achieved on both cellulose polyacetate strips and polyacrylamide tube gels under basic conditions. Although analytical separations can be achieved by both HPLC and electrophoresis, only HPLC is suitable for the development of preparative scale separations. Column chromatography, ion-pairing and ion-suppression HPLC techniques fail to separate such highly charged and closely related aromatic compounds.  相似文献   

17.
Miniaturized capillary isoelectric focusing in plastic microfluidic devices   总被引:1,自引:0,他引:1  
Tan W  Fan ZH  Qiu CX  Ricco AJ  Gibbons I 《Electrophoresis》2002,23(20):3638-3645
We report the demonstration of miniaturized capillary isoelectric focusing (CIEF) in plastic microfluidic devices. Conventional CIEF technique was adapted to the microfluidic devices to separate proteins and to detect protein-protein interactions. Both acidic and basic proteins with isoelectric points (pI) ranging from 5.4 to 11.0 were rapidly focused, mobilized, and detected in a 1.2 cm long channel (50 microm deep x 120 microm wide) with a total analysis time of 150 s. In a device with a focusing distance of 4.7 cm, the separation efficiency for a basic protein, lysozyme, was achieved as high as 1.5 x 10(5) plates, corresponding to 3.2 million plates per meter. We also experimentally confirmed that IEF resolution is essentially independent of focusing length when the applied voltage is kept the same and within a range that it does not cause Joule heating. Further, we demonstrated the use of miniaturized CIEF to study the interactions between two pairs of proteins, immunoglobulin G (IgG) with protein G and anti-six histidine (anti-6xHis) with 6xHis-tagged green fluorescent protein (GFP). Using this approach, protein-protein interactions can be detected for as little as 50 fmol of protein. We believe miniaturized CIEF is useful for studying protein-protein interactions when there is a difference in pI between a protein-protein complex and its constitutent proteins.  相似文献   

18.
When electrospray ionisation mass spectrometry (ESI-MS) is used on-line with capillary isoelectric focusing (CIEF), the presence of the carrier ampholytes creating the IEF pH gradient is not desirable. With the purpose of removing these ampholytes, we have developed a free-flow electrophoresis (FFE) device and coupled it to CIEF. The different parameters inherent to the resulting CIEF/FFE system were optimised using ultraviolet absorbance (UV) detection. The on-line coupling of this system with ESI-MS was successfully realised for three model proteins (myoglobin, carbonic anhydrase I and beta-lactoglobulin B).  相似文献   

19.
Shimura K 《Electrophoresis》2002,23(22-23):3847-3857
The methodological developments in the field of capillary isoelectric focusing (CIEF) published between 1997-2001 are reviewed as a continuation of the previous review by Rodriguez-Diaz et al. (Electrophoresis 1997, 18, 2134-2144). The applications are summarized and the progress in CIEF technologies, including experimental setup with coated and uncoated capillaries, remedies for the presence of salts in samples, additives to reduce precipitation of samples during the focusing process, calibration of the pH gradients, issues of reproducibility, carrier ampholyte-free CIEF, and a computer simulation of focusing process are discussed. Developments of IEF separations in fabricated microchannels and the advances in detection schemes, i.e., imaging, fluorescence and chemiluminescence, are summarized. The progress in micropreparation was noted, and the massive works for two-dimensional separations are described for the coupling with size-exclusion chromatography and mass spectrometry, in which the developments aimed at proteomics are discussed separately. The applications for the detection of noncovalent complexes and the separations of microorganisms are reviewed.  相似文献   

20.
The chromatographic behavior of some alkaline-earth, transition, heavy, and rare-earth metals on a number of complexing sorbents containing surface iminodiacetic acid (IDA) functional groups is studied. The conditions under which metal retention is determined by complexation on the sorbent surface were established, and the main principles of a new variant of the liquid chromatography, i.e., high-performance chelation ion chromatography (HPCIC), are formulated. The efficiency and selectivity of separation of the metal ions are considered depending on the type of the IDA bonding, the sorbent matrix parameters, the eluent composition, and the temeprature of the chromatographic column. Under optimal conditions, the metal retention is shown to linearly correlate with the stability constants of the respective complexes in the double-logarithmic scale. The application of HPCIC to the analysis of multicomponent systems is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号