首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time, we utilized multifunctional nanoparticles composite (NPs composite) for matrix-assisted laser desorption/ionization mass spectrometric (MALDI-MS) analysis of peptides and proteins. Multiwalled carbon nanotubes doped with Cd(2+) ions and modified with cadmium sulfide NPs were synthesized by a chemical reduction method at room temperature. The multifunctional NPs composite applied for the analysis of peptides and microwave-digested proteins in the atmospheric pressure matrix-assisted laser desorption/ionization ion-trap and MALDI time-of-flight (TOF) mass spectrometry (MS) was successfully demonstrated. The maximum detection sensitivity for peptides in MALDI-MS was achieved by the adsorption of negatively charged peptides onto the surfaces of NP composite through electrostatic interactions. The optimal conditions of peptide mixtures were obtained at 20 min of incubation time using 1 mg of NPs composite when the pH of the sample solution was kept higher than the pI values of peptides. The potentiality of the NP composite in the preconcentration of peptides was compared with that of the individual NP by calculating the preconcentration factors (PF) and found that the NPs composite showed a 4-6 times of PF than the other NPs. In addition, the NPs composite was also applied as heat-absorbing materials for efficient microwave tryptic digestion of cytochrome c and lysozyme from milk protein in MALDI-TOF-MS analysis. We believe that the use of NPs composite technique would be an efficient and powerful preconcentrating tool for MALDI-MS for the study of proteome research.  相似文献   

2.
Kailasa SK  Wu HF 《Talanta》2010,83(2):527-534
We report the first use of functionalized Ag2Se nanoparticles (NPs) as effective extracting probes for NPs-based liquid-phase microextraction (NPs-LPME) to analyze hydrophobic peptides and proteins from biological samples (urine and plasma) and soybean in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Surface modified functional groups such as octadecanethiol (ODT) and 11-mercaptoundecanoic acid (MUA) on Ag2Se NPs were found to play an important role for efficient extraction of peptides and proteins from test samples through hydrophobic interactions. The peptides can be efficiently extracted using functionalized Ag2Se NPs as extracting probes in the presence of high concentration of matrix interferences such as 4 M urea, 0.5% Triton X-100 and 3% NaCl. Ag2Se@ODT NPs have shown better extraction efficiency and detection sensitivity for peptides than Ag2Se@MUA NPs, bare Ag2Se NPs and conventional MALDI-MS. The LODs are 20-68 nM for valinomycin and 100-180 nM for gramicidin D using Ag2Se@ODT NPs-LPME in the MALDI-MS. The current approach is highly sensitive and the target analytes can be effectively isolated without sample loss and efficiently analyzed in MALDI-MS.  相似文献   

3.
Kailasa SK  Wu HF 《The Analyst》2012,137(7):1629-1638
The sensitivity and efficiency of SALDI-MS or MALDI-MS is mainly dependent on the nature of matrix. A novel approach is proposed for one-pot synthesis of dopamine dithiocarbamate-functionalized gold nanoparticles (DDTC-Au NPs). Their application to quantification of small molecules by surface assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF-MS) and rapid identification of phosphopeptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is investigated. The synthesized DDTC-Au NPs were characterized by UV-visible and FT-IR spectroscopy, H(1)NMR, SEM and TEM. DDTC-Au NPs offers marked improvement on analyte ionization and effectively suppressed the background noise which leads to clean mass spectra. We also demonstrated the use of DDTC-Au NPs as affinity probes for selective enrichment of phosphopeptides from the solutions of microwave tryptic digested casein proteins. Compared with a conventional matrix, DDTC-Au NPs exhibited a high desorption/ionization efficiency for accurate quantification of small molecules including amino acid (glutathione), drugs (desipramine and enrofloxacin) and peptides (valinomycin and gramicidin D) and successfully utilized as novel affinity probes for straightforward and rapid identification of phosphopeptides from casein proteins (α-, β-casein and nonfat milk), showing a great potentiality to the real-time analysis.  相似文献   

4.
Ke Y  Kailasa SK  Wu HF  Chen ZY 《Talanta》2010,83(1):178-184
CdS quantum dots (∼5 nm) are used as multifunctional nanoprobes as an effective matrix for large proteins, peptides and as affinity probes for the enrichment of tryptic digest proteins (lysozyme, myoglobin and cytochrome c) in laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS). The use of CdS quantum dots (CdS QDs) as the matrix allows acquisition of high resolution LDI mass spectra for large proteins (5000-80,000 Da). The enhancement of mass resolution is especially notable for large proteins such as BSA, HSA and transferrin (34-49 times) when compared with those obtained by using SA as the matrix. This technique demonstrates the potentiality of LDI-TOF-MS as an appropriate analytical tool for the analysis of high-molecular-weight biomolecules with high mass resolution. In addition, CdS QDs are also used as matrices for background-free detection of small biomolecules (peptides) and as affinity probes for the enrichment of tryptic digest proteins in LDI-TOF-MS.  相似文献   

5.
The analysis of oligonucleotides using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has led to the investigation of the use of matrix additives (i.e., co-matrices) to help improve the poor spectral quality commonly observed during the analysis of this class of compounds. The use of certain matrix additives in MALDI-MS has been investigated previously, and these additives have been shown to enhance the desorption/ionization efficiency of oligonucleotides during the MALDI experiment. Specifically, amine bases, such as piperidine, imidazole, and triethylamine, have been shown to improve mass spectral quality as assessed by improved molecular ion resolution and increased molecular ion abundance. These improvements occur due to competition between the oligonucleotide and the co-matrix for protons generated during the MALDI event. Co-matrices with proton affinities near or above the proton affinities of the nucleotide residues serve as proton sinks during the desorption/ionization process. In this work, we have investigated the use of polyamines as co-matrices for MALDI mass spectrometric analysis of oligonucleotides. Spermine tetrahydrochloride, spermine, spermidine trihydrochloride, and spermidine were evaluated for their effectiveness at enhancing the mass spectral quality of oligonucleotides analyzed using MALDI-MS. The solution-phase pK( b) values and the gas-phase proton affinities of these polyamines were determined, and it was found that the polyamines appear to be more basic than the monofunctional amines investigated previously. The mass spectral data shows that spermidine and spermine are extremely effective co-matrices, yielding improved molecular ion resolution and molecular ion abundances. The spermine co-matrices are more effective than the spermidine co-matrices, but adduction problems with the spermine co-matrices limits their overall utility. In general, polyamine co-matrices are found to be more effective than monofunctional amine co-matrices at improving the mass spectral data obtained during MALDI-MS of oligonucleotides.  相似文献   

6.
Shrivas K  Agrawal K  Wu HF 《The Analyst》2011,136(13):2852-2857
We report the use of platinum nanoparticles (PtNPs) for analysis of amino acids, peptides, proteins and microwave digested proteins (lysozyme and bovine serum albumin) without any tedious washing and separation procedures prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In the present study, PtNPs play three functions, such as matrix, affinity probe and acceleration of protein digestion by absorbing the microwave irradiation. Good signal intensity of the target molecules from the sample was obtained when laser energy, NPs concentration and incubation time were set to 35 μJ, 25 nM and 30 min, respectively. In addition, higher numbers of peptide sequence were obtained for microwave digested lysozyme protein using PtNPs as compared to previously reported methods for analysis of digested protein in MALDI-MS. Thus, the present method is a simple, rapid and one step preparation method for the analysis of amino acids, peptides, proteins and digested proteins in MALDI-TOF-MS without the need for any tedious purifications and washing procedures.  相似文献   

7.
A simple, rapid, straightforward and washing/separation free of in-solution digestion method for microwave-assisted tryptic digestion of proteins (cytochrome c, lysozyme and myoglobin) using bare TiO(2) nanoparticles (NPs) prepared in aqueous solution to serve as multifunctional nanoprobes in electrospray ionization mass spectrometry (ESI-MS) was demonstrated. The current approach is termed as 'on particle ionization/enrichment (OPIE)' and it can be applied in ESI-MS, atmospheric pressure-matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The bare TiO(2) NPs can assist, accelerate and effectively enhance the digestion efficiency, sequence coverage and detection sensitivity of peptides for the microwave-assisted tryptic digestion of proteins in ESI-MS. The reason is attributed to the fact that proteins or partially digested proteins are easily attracted or concentrated onto the surface of TiO(2) NPs, resulting in higher efficiency of digestion reactions in the microwave experiments. Besides, the TiO(2) NPs could act as a microwave absorber to accelerate and enrich the protein fragments in a short period of time (40-60 s) from the microwave experiments in ESI-MS. Furthermore, the bare TiO(2) NPs prepared in aqueous solution exhibit high adsorption capability toward the protein fragments (peptides); thus, the OPIE approach for detecting the digested protein fragments via ESI and MALDI ionization could be achieved. The current technique is also a washing and separation-free technique for accelerating and enriching microwave-assisted tryptic digestion of proteins in the ESI-MS and MALDI-MS. It exhibits potential to be widely applied to biotechnology and proteome research in the near future.  相似文献   

8.
A simple method to synthesize electrostatically self-assembled azides on zinc sulfide nanoparticles (ZnS-N3 NPs) was described and then it was further applied as a multifunctional nanoprobe such as enriching, desalting, accelerating and separation-/washing free nanoprobes for rapid analysis of peptides and proteins and microwave assisted tryptic digested proteins in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The ZnS-N3 NPs were characterized by UV-vis, FT-IR, SEM and TEM spectroscopy. The ZnS-N3 NPs can effectively enrich signal intensities for 2-10 times for various peptides and proteins including HW6, insulin, ubiquitin, cytochrome c, lysozyme, myoglobin and bovine serum albumin (BSA) in MALDI-TOF MS. Furthermore, we also demonstrated that the ZnS-N3 NPs can serve as accelerating probes for microwave assisted tryptic digestion of proteins in MALDI-TOF MS. The applicability of the present method on complex sample analysis such as milk proteins from cow milk and ubiquitin and ubiquitin like proteins from oyster mushroom were also demonstrated.  相似文献   

9.
We utilized three different types of TiO2 nanoparticles (NPs) namely TiO2‐dopamine, TiO2‐CdS and bare TiO2 NPs as multifunctional nanoprobes for the rapid enrichment of phosphopeptides from tryptic digests of α‐ and β‐casein, milk and egg white using a simplified procedure in MALDI‐TOF‐MS. Surface‐modified TiO2 NPs serve as effective matrices for the analysis of peptides (gramicidin D, HW6, leucine‐enkephalin and methionine‐enkephalin) and proteins (cytochrome c and myoglobin) in MALDI‐TOF‐MS. In the surface‐modified TiO2 NPs‐based MALDI mass spectra of these analytes (phosphopetides, peptides and proteins), we found that TiO2‐dopamine and bare TiO2 NPs provided an efficient platform for the selective and rapid enrichment of phosphopeptides and TiO2‐CdS NPs efficiently acted as the matrix for background‐free detection of peptides and proteins with improved resolution in MALDI‐MS. We found that the upper detectable mass range is 17 000 Da using TiO2‐CdS NPs as the matrix. The approach is simple and straightforward for the rapid analysis of phosphopeptides, peptides and proteins by MALDI‐MS in proteome research.  相似文献   

10.
The analysis of peptide mixtures from urine and plasma samples using bare (uncapped) SiO2 nanoparticles (NPs) with atmospheric-pressure matrix-assisted laser desorption/ionization mass spectrometry (AP-MALDI-MS) has been reported. The method was based on the adsorption of positively charged peptides on the surface of negatively charged SiO2 NPs through the electrostatic force of attraction. The adsorption on the surface of SiO2 NPs caused enhancement of ionization efficiency of analytes and subsequently increased the signal intensity of peptides. Maximum signal intensity was obtained at optimized concentration of SiO2 NPs and pH of the aqueous solution. The limits of detection (LODs) obtained for different peptides in deionized water with and without using SiO2 NPs were in the range 4.7-360 nM and 0.1-18.0 microM, respectively. The sensitivity of the proposed method was 21-53-fold better than conventional use of AP-MALDI-MS. In addition, linearity in the range 9.5-95 nM was obtained for the peptide angiotensin-II in deionized water with a correlation of estimation of 0.992 using an internal standard. The proposed method provided a simple way to facilitate the ionization of peptides, reduce sample complexity and increase the tolerance to salts and surfactants in the analysis of biological samples. The applicability of the present method was also demonstrated in the real-world sample analysis of aminothiols and lysozyme using MALDI-time-of-flight (TOF)-MS.  相似文献   

11.
Multifunctional ZrO2 nanoparticles (NPs) and ZrO2-SiO2 nanorods (NRs) have been successfully applied as the matrices for cyclodextrins and as affinity probes for enrichment of peptides (leucine-enkephalin, methionine-enkephalin and thiopeptide), phosphopeptides (from tryptic digestion products of β-casein) and phosphoproteins from complex samples (urine and milk) in atmospheric pressure matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and MALDI time-of-flight (TOF) MS. The results show that the ZrO2 NPs and ZrO2-SiO2 NRs can interact with target molecules (cyclodextrins, peptides, and proteins), and the signal intensities of the analytes were significantly improved in MALDI-MS. The maximum signal intensities of the peptides were obtained at pH 4.5 using ZrO2 NPs and ZrO2-SiO2 NRs as affinity probes. The limits of detection of the peptides were found to be 75-105 fmol for atmospheric pressure MALDI-MS and those of the cyclodextrins and β-casein were found to be 7.5-20 and 115-125 fmol, respectively, for MALDI-TOF-MS. In addition, these nanomaterials can be applied as the matrices for the analysis of cyclodextrins in urine samples by MALDI-TOF-MS. ZrO2 NPs and ZrO2-SiO2 NRs efficiently served as electrostatic probes for peptide mixtures and milk proteins because 2–11 times signal enhancement can be achieved compared with use of conventional organic matrices. Moreover, we have successfully demonstrated that the ZrO2 NPs can be effectively applied for enrichment of phosphopeptides from tryptic digestion of β-casein. Comparing ZrO2 NPs with ZrO2-SiO2 NRs, we found that ZrO2 NPs exhibited better affinity towards phosphopeptides than ZrO2-SiO2 NRs. Furthermore, the ZrO2 and ZrO2-SiO2 nanomaterials could be used to concentrate trace amounts of peptides/proteins from aqueous solutions without tedious washing procedures. This approach is a simple, straightforward, separation-and washing-free approach for MALDI-MS analysis of cyclodextrins, peptides, proteins, and tryptic digestion products of phosphoproteins.   相似文献   

12.
CdS nanoparticles (NPs) passivated with amino acids (l-alanine and l-arginine) having spherical hierarchical morphology were synthesized by room temperature wet chemical method. Synthesized NPs were characterized by ultraviolet–visible (UV–vis) spectroscopy to study the variation of band gaps with concentration of surface modifying agents. Increase in band gap has been observed with the increase in concentration of surface modifying agents and was found more prominent for CdS NPs passivated with l-alanine. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were carried out for the study of crystal structure and morphology of CdS NPs. The average particle size of CdS NPs calculated from Debye-Scherer formula was found to less than 5 nm and agrees well with those determined from UV–vis spectra and TEM data. Fourier transform infrared (FT-IR) spectroscopy was performed to know the functional groups of the grown NPs. Peaks in FT-IR spectra indicate the formation of CdS NPs and capping with l-alanine and l-arginine. Photoluminescence spectra of these NPs were also studied. Finally, colloidal solution of CdS-PVAc was subjected to Z-scan experiment under low power cw laser illumination to characterize them for third order nonlinear optical properties. CdS-PVAc colloidal solution shows enhanced nonlinear absorption due to RSA and weak FCA on account of two photon absorption processes triggered by thermal effect.  相似文献   

13.
We have investigated six nanomaterials for their applicability as surfaces for the analyses of peptides and proteins using surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS). Gold nanoparticles (NPs) were useful nanomateriais for small analytes (e.g., glutathione); Pt nanosponges and Fe3O4 NPs were efficient nanomaterials for proteins, with an upper detectable mass limit of ca. 25 kDa. Nanomateriais have several advantages over organic matrices, including lower limits of detection for small analytes and lower batch-to-batch variations (fewer problems associated with “sweet spois”), when used in laser desorption/ionization mass spectrometry.  相似文献   

14.
Seven new bioinspired chemosensors (2-4 and 7-10) based on fluorescent peptides were synthesized and characterized by elemental analysis, (1)H and (13)C NMR, melting point, matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS), and IR and UV-vis absorption and emission spectroscopy. The interaction with transition- and post-transition-metal ions (Cu(2+), Ni(2+), Ag(+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), and Fe(3+)) has been explored by absorption and fluorescence emission spectroscopy and MALDI-TOF-MS. The reported fluorescent peptide systems, introducing biological molecules in the skeleton of the probes, enhance their sensitivity and confer them strong potential for applications in biological fields. Gold and silica nanoparticles functionalized with these peptides were also obtained. All nanoparticles were characterized by dynamic light scattering, transmission electron microscopy, and UV-vis absorption and fluorescence spectroscopy. Stable gold nanoparticles (diameter 2-10 nm) bearing ligands 1 and 4 were obtained by common reductive synthesis. Commercial silica nanoparticles were decorated at their surface using compounds 8-10, linked through a silane spacer. The same chemosensors were also taken into aqueous solutions through their dispersion in the outer layer of silica core/poly(ethylene glycol) shell nanoparticles. In both cases, these complex nanoarchitectures behaved as new sensitive materials for Ag(+) and Hg(2+) in water. The possibility of using these species in this solvent is particularly valuable because the impact on human health of heavy- and transition-metal-ion pollution is very severe, and all analytical and diagnostics investigations involve a water environment.  相似文献   

15.
去甲氯胺酮半抗原及其全抗原的合成与鉴定   总被引:1,自引:0,他引:1  
在低温条件下,去甲氯胺酮与琥珀醛酸反应,合成了半抗原羧基-去甲氯胺酮,电喷雾质谱鉴定结果表明,目标半抗原合成成功;通过碳二亚胺法将半抗原与载体蛋白偶联制备人工抗原,红外光谱法鉴定结果表明,人工抗原合成成功,基质辅助激光解析电离飞行时间质谱鉴定表明去甲氯胺酮半抗原与牛血清白蛋白的偶联比为11:1。经动物免疫,获得高效价特异性多克隆抗体,抗血清效价可达5.12×104。  相似文献   

16.
Nanoparticles (NPs) are useful as matrixes for the analyses of several types of biomolecules (including aminothiols, peptides, and proteins) and for mass spectrometric imaging through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS), mainly because of their large surface area, strong absorption in the ultraviolet-near-infrared region, and ready functionalization. Metallic NPs, metal oxide NPs, and semiconductor quantum dots, unmodified or functionalized with recognition ligands, have a strong affinity toward analytes; therefore, they allow the enrichment of biomolecules, leading to improved sensitivity with minimal matrix interference in their mass spectra. SALDI-MS using NPs overcomes the two major problems commonly encountered in matrix-assisted laser desorption/ionization mass spectrometry: the presence of "sweet spots" and the high background signals in the low-mass region. In this tutorial review, we discuss the roles played by the nature, size, and concentration of the NPs, the buffer composition, and the laser energy in determining the sensitivity and mass ranges for the analytes. We describe internal standard SALDI-MS methods that allow the concentrations of analytes to be determined with low variation (relative standard deviations: <10%) and we highlight how the simplicity, sensitivity, and reproducibility of SALDI-MS approaches using various NPs allow the analyses of proteins and small analytes and the imaging of cells.  相似文献   

17.
硅片类型和多孔硅结构的多样性影响了多孔硅表面的激光解吸/离子化质谱(DIOS)(无辅助基质的激光解吸/电离飞行时间质谱(LDI-TOF-MS))数据的重复性和靶的耐储时间。本工作通过在多孔硅的表面淀积金纳米颗粒并将其作为目标靶来增强软物质分子如聚乙二醇和多肽的激光解吸/电离质谱信号。纳米金的淀积钝化了多孔硅表面的Si-H活性基团,增加了靶的耐储时间。用场发射扫描电镜表征了多孔硅淀积金纳米颗粒前后的形貌,用X射线能量色散光谱法分析金的百分含量,结果表明其含量随沉积时间的延长而增加。激光解吸/电离质谱信号的增强可能是由多孔硅及其支持的金纳米颗粒的光学和物理性质引起的,该类型的样品靶在激光解吸/电离飞行时间质谱的应用上结合了多孔硅和金纳米颗粒的双重优势。  相似文献   

18.
A functionalized carbon nanotube (CNT), CNT 2,5-dihydroxybenzoyl hydrazine derivative, was synthesized and used as both pH adjustable enriching reagent and matrix in matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of trace peptides. The derivative reagent, 2,5-dihydroxybenzoyl hydrazine, introduced phenolic hydroxyl and phenyl groups to the surface of the CNT. The former group can provide adjustable surface charge and a source of protons for chemical ionization, and the latter helps to keep strong ultraviolet absorption for enhancing pulsed laser desorption and ionization. It was found that the functionalized CNT was less twisted in a basic condition (pH 10.5), which afforded an increased surface area to volume ratio for adsorption towards trace peptides. However, functionalized CNT becomes deposited in an acidic condition (pH 5) and can be isolated readily from the sample solutions once the nanoparticles have trapped the target analytes, thus providing a novel and convenient alternative method for quick isolation. Compared with the previously reported method on enriching analytes using the pristine CNT, it is observed that the detection limit for analytes can be greatly improved due to enhancing adsorption capacity of the functionalized CNT. Moreover, peptide mixture at concentration as low as 0.01 pg/microL still can be detected after enrichment mediated by the functionalized CNT, while it is difficult to be detected without enrichment at concentration 0.1 pg/microL using alpha-cyano-4-hydroxycinnamic acid (CHCA) as matrix. Therefore, high efficiency of adsorption and enrichment towards trace peptides can be achieved by adjusting pH value of the functionalized CNT dispersion.  相似文献   

19.
The aim of this work was to deeply investigate the structure and properties of electrochemically synthesized silver nanoparticles (AgNPs) through high-resolution techniques such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), Zeta Potential measurements, and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Strong brightness, tendency to generate nanoclusters containing an odd number of atoms, and absence of the free silver ions in solution were observed. The research also highlighted that the chemical and physical properties of the AgNPs seemed to be related to their peculiar oxidative state as suggested by X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRPD) analyses. Finally, the MTT assay tested the low cytotoxicity of the investigated AgNPs.  相似文献   

20.
Patterns created by the inkjet printing of functionalized gold nanoparticles (NPs) can be selectively detected by laser desorption/ionization imaging mass spectrometry (LDI-IMS). These patterns can only be visualized by mass, providing a robust yet tunable system for potential anti-counterfeiting applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号