首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The probes for metal ion induced chromo- and fluorogenic signalling responses alter their selectivity depending upon the nature of substituent as well as a function of solvent medium. 2 has shown selectivity towards Fe(III) ion, 4 towards Hg(II) ion while 3 is responsive towards both Fe(III) and Hg(II) ions.  相似文献   

2.
在本文中,我们研制了一种基于T-T碱基错配特异性键合汞离子的荧光传感器用于汞离子的检测。该传感器由两条分别标记了荧光基团(F)和淬灭基团(Q)的DNA探针组成,并且含有两对用于结合汞离子的T-T错配碱基。当汞离子存在时,两条探针之间形成T-Hg2+-T结构,作用力增强,从而拉近了荧光基团与淬灭基团之间的距离,发生能量转移,使荧光信号在一定程度上被淬灭。在优化的条件下,我们使用该传感器对汞离子进行检测,动力学响应范围为50nM到1000nM,线性相关方程为y= 5281.13 - 1650.56 lg[Hg2+] ( R2 = 0.985),检测下限为79nM。此外,我们还考察了该传感器的选择性,当用其它干扰离子(浓度都为1.0µM)代替待测离子进行实验时,没有发生明显的荧光淬灭,说明该传感器具有较高的选择性。该传感器的构建为汞离子的检测提供了一条快速、简便的新途径。  相似文献   

3.
We have synthesised water soluble CdS/ZnS core-shell quantum dots (QDs) capped with mercaptoacetic acid (MAA). They were characterised by UV–vis absorption spectroscopy, fluorescence spectroscopy, FT-IR and transmission electron microscopy. Such QDs can be used as fluorescent probes for the determination of metal ions because they quench the fluorescence of the QDs. The QDs exhibit absorption and emission bands at 345?nm and 475?nm respectively, which is more longer wavelength compared to MAA-capped CdS QDs and obviously is the result of the larger particle size. The fluorescence intensity of CdS-based QDs is strongly enhanced by coating them with a shell of ZnS. In addition, such functionalised QDs are more sensitive to Hg(II) ions. Parameters such as pH, temperature and concentration of the QDs have been optimised. A high selectivity and sensitivity toward Hg(II) ions is obtained at pH 7.4 and a concentration of 12.0?mg of QDs per L. Under optimum conditions, the fluorescence intensity of CdS/ZnS QDs is linearly proportional to the concentration of Hg(II) in the range from 2.5 to 280?nM, with a detection limit of 2.2?nM. The effect of potentially interfering cations was examined and confirmed the high selectivity of this material.
Figure
Water soluble Mercaptoacetic acid (MAA)-capped CdS/ZnS core-shell quantum dots (QDs) was synthesised and characterised by using the UV-Visible absorption spectroscopy, Fluorescence spectroscopy, Fourier Transform Infrared Spectroscopy (FT-IR) and Transmission Electron Microscopy (TEM). These functionalised QDs are used as fluorescence probe for the determination of Hg(II) ions, based on the fluorescence quenching of QDs. A high optical selectivity and sensitivity toward Hg(II) ions was obtained at pH 7.4 of Tris–HCl buffer with a QDs concentration of 12.0?mgL?1. Under optimum conditions, the fluorescence intensity of CdS/ZnS QDs was linearly proportional to mercury ions concentration in the range 0.025?×?10?7 to 2.8?×?10?7?M with a detection limit of 2.2?×?10?9?M. The effect of common foreign ions on the fluorescence of the QDs was examined which confirmed high selectivity of this material towards Hg(II) ions. Measurements of real samples also give satisfactory results which were in good agreement with those obtained using Atomic Absorption Spectroscopy. Therefore, these QDs are not only sensitive and of low cost, but also can be reliable for practical applications.  相似文献   

4.
Fluorescence probes NA1 and NA2 derived from 1-naphthylamine (NA) as fluorophore have been synthesized and characterized by different spectroscopic studies. Identification behaviour of these probes towards various metal ions has been investigated. Both the fluorescent probes are selective as well as sensitive towards Fe(III) ion. Novel fluorescence probe NA2 afforded turn-on fluorescence behaviour for Fe(III) ion over other metal ions such as Ca(II), Mg(II), Mn(II), Fe(II), Co(II), Fe(III), Ni(II), Cu(II), Zn(II) and Hg(II).  相似文献   

5.
Chen X  Zu Y  Xie H  Kemas AM  Gao Z 《The Analyst》2011,136(8):1690-1696
A simple colorimetric assay with high sensitivity, excellent selectivity and a tunable dynamic range is reported for detecting trace amounts of mercuric ion in aqueous solution based on the coordination of Hg(2+) to the gold nanoparticle (AuNP)-associated 3-nitro-1H-1,2,4-triazole (NTA). The NTA can stabilize the AuNPs against tris-induced aggregation through capping the AuNPs. In the presence of Hg(2+), the NTA is released from the AuNP surface via the formation of a NTA-Hg(2+) coordination complex, leading to the aggregation of AuNPs in tris. This detection strategy is unique in terms of high sensitivity and excellent selectivity, a tunable dynamic range, and simplicity of probe preparation. Low detection limits of 7 nM (1.4 ppb) and 50 nM (10 ppb) can be achieved by spectrophotometer and by direct visualization, respectively, under the optimized conditions. No noticeable colour changes are observed towards other metal ions (Ag(+), Zn(2+), Ni(2+), Cr(3+), Mg(2+), Cu(2+), Co(2+), Cd(2+), Pb(2+), Fe(2+)) at concentrations up to 100 μM without the need of any other masking agents. In addition, the dynamic range of the assay can be easily tuned by adjusting the amount of NTA in the NTA-AuNP probes. More importantly, the NTA-AuNP probes can be simply prepared by mixing NTA with as-synthesized citrate-capped AuNPs. This not only avoids complicated surface modifications and tedious separation processes, but also is cost-effective.  相似文献   

6.
合成了一种中位-苯甲酸基取代的氟硼二吡咯类染料衍生物(1)并研究了它的金属离子传感性能。在甲醇溶液中,染料1显示出显著的对汞离子具有选择性的"开-关"型亲离子荧光团响应,而对其他一些代表性碱金属、碱土金属、过渡金属及重金属离子等都没有明显的荧光响应;同时染料1在对所检测的金属离子中,通过其溶液颜色的改变对汞离子显示出明显的选择性显色行为,以便实现对汞离子的"裸眼检测"。  相似文献   

7.
Mercury is currently widely used in industries which leads to various means of Hg(II) waste exposure and its accumulation in organisms will cause neurological damages. Thus, there is a great need for the design of probes or sensors with high sensitivity and selectivity for detecting and monitoring Hg(II) at physiological pH. Thus a novel and simple molecular probe P1 was prepared from 1,1′‐(1,3‐phenylene)‐bis(2,4‐pentanedionato) for sensing Hg(II) via chelation‐enhanced fluorescence (CHEF) mechanism. The probe indicated a selectively fluorescent response to Hg(II) in aqueous media excited by the ultraviolet light of 254 nm. The recognition mechanism was further studied by semi‐empirical AM1 and molecular mechanics MM+ methods in HyperChem 8.0. The calculation indicated a tetrahedron coordination geometry for Hg(II) and a chair‐like configuration for the total molecule. The fluorescent images sensing Hg(II) in living mouse fibroblast cells by the probe were obtained by fluorescence microscope.  相似文献   

8.
含蒽酰亚胺基团的化合物N-(2-(6-氨基吡啶))-9-蒽酰亚胺(L1)对Fe3+表现出灵敏的荧光增强响应.L1的衍生物N,N-’(2,6-吡啶基)-二(9-蒽酰亚胺)(L2)对Hg2+在紫外-可见吸收光谱和荧光光谱上显示了良好的识别性.即使在其它金属阳离子存在下,L1和L2分别对于Fe3+和Hg2+仍然表现出较好的选择性.  相似文献   

9.
We report herein a new class of metal ion chemosensors and give the first example of a metal-dependent peptidase chemosensor for metal ions. The chemosensor contains the basic specific Ni(II)-dependent peptide bond hydrolysis sequence (Gly-Ala-Ser-Arg-His-Trp-Lys-Phe-Lys). The substrate was labeled with a fluorophore at the N-terminal and a quencher at the C-terminal Lys side chain. Initially, the MOCAc ((7-methoxycoumarin-4-yl)acetyl-) emission was quenched by the nearby quencher. In the presence of Ni(II), the substrate was irreversibly cleaved at the cleavage site, leading to a 20-fold increase in fluorescence intensity. The chemosensor combines the high selectivity of a peptidase (at least greater than tenfold for Ni(II) over other metal ions) with the high sensitivity of fluorescence detection limit of 50 nM and can be applied for the quantitative detection of Ni(II) over a concentration range of three orders of magnitude. Given this degree of selectivity and sensitivity, our molecular engineering design may prove useful in the future development of other peptidase-based probes for different metal ions in toxicological and environmental monitoring.  相似文献   

10.
Two tris(2-aminoethyl)amine (tren) based tripodal amide fluoroionophores, 1 and 2, functionalized with quinoline (chelating fluorophore) and naphthalene (non-chelating fluorophore) respectively, are synthesized in good yields. Fluoroionophore 1 shows a selective UV-Vis spectral shift in the case of Hg(2+) in acetonitrile among different metal ions like Li(+), Na(+), Ca(2+), Mg(2+), Cr(2+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), Pb(2+), and Ag(+). On the other hand, fluoroionophore 2 shows no selectivity towards any of the above metal ions in the UV-Vis study. Furthermore, 1 shows a selective chelation induced fluorescence enhancement in the presence of Hg(2+) whereas 2 shows the enhancement of fluorescence with most of the metal ions via a photoinduced charge transfer mechanism. The naked eye detection of Hg(2+) in an acetonitrile solution of 1 shows a greenish fluorescence upon UV light irradiation. The isolated Hg(2+) complex of 1, 3, shows a similar UV-Vis and fluorescence spectral output as observed from in situ spectroscopic studies of 1 in the presence of Hg(2+). Infra-red (IR) and (1)H- NMR studies also reveal the interaction of Hg(2+) with the quinoline nitrogen atoms as well as with the amide functionality.  相似文献   

11.
荧光探针凭借其选择性好、灵敏度高、响应时间快、易于操作和检测限低等优点得到了广泛的关注。 激发态分子内质子转移(ESIPT)化合物具有特殊的激发态光物理过程,其显著的光物理性质是有较高的荧光量子产率及大的斯托克斯位移。 对于荧光分子而言,较大的斯托克斯位移可以减少自吸收和由内滤效应产生的干扰,增强分子的耐光性,有利于荧光的发射。 本文对ESIPT荧光探针检测离子(包括金属阳离子和阴离子)、中性小分子和生物大分子的研究进展进行阐述,并对ESIPT荧光分子的存在问题和应用前景进行评述。  相似文献   

12.
A series of metal complexes of Zn(II) and Hg(II) having the general composition [ML2]X2 with thiosemicarbazide have been prepared and characterized by elemental chemical analysis, molar conductance, and spectral (IR and mass) studies. The IR spectral data suggest the involvement of sulfur and terminal amino nitrogen in coordination to central metal ion. On the basis of spectral studies, a tetrahedral geometry has been assigned for the Zn(II) and Hg(II) complexes. Thiosemicarbazide and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties. The article is published in the original.  相似文献   

13.
Two new rhodamine based probes 1 and 2 for the detection of Fe(3+) were synthesized and their selectivity towards Fe(3+) ions in the presence of other competitive metal ions tested. The probe 1 formed a coloured complex with Fe(3+) as well as Cu(2+) ions and revealed the lack of adequate number of coordination sites for selective complexation with Fe(3+). Incorporation of a triazole unit to the chelating moiety of 1 resulted in the probe 2, that displayed Fe(3+) selective complex formation even in the presence of other competitive metal ions like Li(+), Na(+), K(+), Cu(2+), Mg(2+), Ca(2+), Sr(2+), Cr(3+), Mn(2+), Fe(2+), Co(2+), Ni(2+), Zn(2+), Cd(2+), Hg(2+) and Pb(2+). The observed limit of detection of Fe(3+) ions (5 × 10(-8) M) confirmed the very high sensitivity of 2. The excellent stability of 2 in physiological pH conditions, non-interference of amino acids, blood serum and bovine serum albumin (BSA) in the detection process, and the remarkable selectivity for Fe(3+) ions permitted the use of 2 in the imaging of live fibroblast cells treated with Fe(3+) ions.  相似文献   

14.
The design of photoluminescent molecular probes for the selective recognition of anions is a major challenge for the development of optical chemical sensors. The reversible binding of anions to lanthanide centers is one promising option for the realization of anion sensors, because it leads in some cases to a strong luminescence increase by the replacement of quenching water molecules. Yet, it is an open problem to gain control of the sensitivity and selectivity of the luminescence response. Primarily, the selective detection of (poly)phosphate species such as nucleotides has emerged as a demanding task, because they are involved in many biological processes and enzymatic reactions. We designed a series of pyridyl‐based multidentate europium complexes (seven‐, six‐, and five‐dentate) including sensitizing chromophores and studied their luminescence intensity and lifetime responses to different (poly)phosphates (adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), cyclic adenosine monophosphate (cAMP), pyrophosphate, and phosphate anions), and carboxyanions (citrate, malate, oxalacetate, succinate, α‐ketoglutarate, pyruvate, oxalate, carbonate). The results reveal that the number of free coordination sites has a significant impact on the sensitivity and selectivity of the response. Because of its reversibility, the lanthanide probes can be applied to monitor the activity of ATP‐consuming enzymes such ATPases and apyrases, which is demonstrated by means of the five‐dentate complex.  相似文献   

15.
The new twistophane 4 has been synthesised, which comprises a conjugated dehydropyridoannulene-type macrocyclic scaffold with outwardly projecting nitrogen-donor sites for the purpose of metal ion coordination. The macrocyclíc structure of 4 was assigned by using spectroscopic methods, and shown to exist in a twisted and chiral ground state conformation by semi-empirical theoretical calculations. A detailed spectroscopic investigation into the metal ion binding properties of 4 and precursor 11 revealed that they functioned as selective complexants, affording a fluorescence quenching output response characteristic of Pd(II) and Hg(II) ions. Furthermore, 4 also signalled the presence of Fe(II), Co(II), Ni(II) and Ag(I) ions by the precipitation of coordination polymers, and exhibited reversible proton-triggered fluorescence quenching behaviour. Macrocycle 4 thus represents a unique type of molecular sensory platform, which may find a wealth of potential applications such as the detection of heavy-metal pollutants, as well as for the fabrication of proton-switchable materials and coordination polymers with novel electronic and magnetic properties.  相似文献   

16.
Heavy metal ions are harmful to aquatic life and humans owing to their high toxicity and non‐biodegradability, so their removal from wastewater is an important task. Therefore, this work focuses on designing suitable, simple and economical nanosensors to detect and remove these metal ions with high selectivity and sensitivity. Based on this idea, different types of mesoporous materials such as hexagonal SBA‐15, cubic SBA‐16 and spherical MCM‐41, their chloro‐functionalized derivatives, as well as 4‐(4‐nitro‐phenylazo)‐naphthalen‐1‐ol (NPAN) azo dye have been synthesized, with the aim of designing some optical nanosensors for metal ions sensing applications. The mentioned azo dye has been anchored into the chloro‐functionalized mesoporous materials. The designed nanosensors were characterized using scanning and transmission electron microscopy as well as Fourier transform infrared and UV–visible spectral analysis, nitrogen adsorption–desorption isotherms, low‐angle X‐ray diffraction and thermogravimetric analyses. Their optical sensing to various toxic metal ions such as Cd (II), Hg (II), Mn (II), Fe (II), Zn (II) and Pb (II) at different values of pH (1.1, 4.9, 7 and 12) was investigated. The optimization of experimental conditions, including the effect of pH and metal ion concentration, was examined. The experimental results showed that the solution pH had a major impact on metal ion detection. The optical nanosensors respond well to the tested metal ions, as reflected by the enhancement in both absorption and emission spectra upon adding different concentrations of the metal salts and were fully reversible on adding ethylene diamine tetra acetic acid or citric acid to the formed complexes. High values of the binding constants for the designed nanosensors were observed at pHs 7 and 12, confirming the strong chelation of different metals to the nanosensor at these pHs. Also, high binding constants and sensitivity were observed for NPAN‐MCM‐41 as a nanosensor to detect the different metal ions. From the obtained results, we succeeded in transforming the harmful azo dye into an environmentally friendly form via designing of the optical nanosensors used to detect toxic metal ions in wastewater with high sensitivity.  相似文献   

17.
Lin YW  Huang CC  Chang HT 《The Analyst》2011,136(5):863-871
Monitoring the levels of potentially toxic metal (PTM) ions (e.g., Hg(2+), Pb(2+), Cu(2+)) in aquatic ecosystems is important because these ions can have severe effects on human health and the environment. Gold (Au) nanomaterials are attractive sensing materials because of their unique size- and shape-dependent optical properties. This review focuses on optical assays for Hg(2+), Pb(2+), and Cu(2+) ions using functionalized Au nanomaterials. The syntheses of functionalized Au nanomaterials are discussed. We briefly review sensing approaches based on changes in absorbance resulting from metal ion-induced aggregation of Au nanoparticles (NPs) or direct deposition of metal ions onto Au NPs. The super-quenching properties of Au NPs allow them to be employed in 'turn on' and 'turn off' fluorescence approaches for the sensitive and selective detection of Hg(2+), Pb(2+), and Cu(2+) ions. We highlight approaches based on fluorescence quenching through analyte-induced aggregation or the formation of metallophilic complexes of Au nanodots (NDs). We discuss the roles of several factors affecting the selectivity and sensitivity of the nanosensors toward the analytes: the size of the Au nanomaterial, the length and sequence of the DNA or the nature of the thiol, the surface density of the recognition ligand, and the ionic strength and pH of the buffer solution. In addition, we emphasize the potential of using new nanomaterials (e.g., fluorescent silver nanoclusters) for the detection of PTM ions.  相似文献   

18.
Qi L  Zhao Y  Yuan H  Bai K  Zhao Y  Chen F  Dong Y  Wu Y 《The Analyst》2012,137(12):2799-2805
In this work, a fluorescent sensing strategy was developed for the detection of mercury(II) ions (Hg(2+)) in aqueous solution with excellent sensitivity and selectivity using a target-induced DNAzyme cascade with catalytic and molecular beacons (CAMB). In order to construct the biosensor, a Mg(2+)-dependent DNAzyme was elaborately designed and artificially split into two separate oligonucleotide fragments. In the presence of Hg(2+), the specific thymine-Hg(2+)-thymine (T-Hg(2+)-T) interaction induced the two fragments to produce the activated Mg(2+)-dependent DNAzyme, which would hybridize with a hairpin-structured MB substrate to form the CAMB system. Eventually, each target-induced activated DNAzyme could catalyze the cleavage of many MB substrates through true enzymatic multiple turnovers. This would significantly enhance the sensitivity of the Hg(2+) sensing system and push the detection limit down to 0.2 nM within a 20 min assay time, much lower than those of most previously reported fluorescence assays. Owning to the strong coordination of Hg(2+) to the T-T mismatched pairs, this proposed sensing system exhibited excellent selectivity for Hg(2+) detection, even in the presence of 100 times of other interferential metal ions. Furthermore, the applicability of the biosensor for Hg(2+) detection in river water samples was demonstrated with satisfactory results. These advantages endow the sensing strategy with a great potential for the simple, rapid, sensitive, and specific detection of Hg(2+) from a wide range of real samples.  相似文献   

19.
This perspective illustrates the coordination features of complexes constructed by 1,2,4-triazole derivatives and transition metal ions which belong to Group IIB, namely Zn(II), Cd(II) and Hg(II), demonstrates their behaviors in thermal stabilities, gas or liquid adsorption, fluorescence and nonlinear optical properties and also discusses the relation between their properties and crystal structures. Various 1,2,4-triazole derivatives containing versatile donor sites for coordination can be obtained through introducing different substituent groups to C3, N4 and C5 positions, thus offering rich coordination modes. The structures of these complexes rely on their triazole ligands, as well as mixed ligands, metal ions, anions and synthetic conditions. Obviously, the diversity in structure induces the controllability of properties, since the properties are influenced by several factors, which is significant for the applications of potential multifunctional materials.  相似文献   

20.
The syntheses and photophysical properties of mercury sensors 2 and 3 (MS2 and MS3), two asymmetrically derivatized fluorescein-based dyes designed for Hg(II) detection, are described. These sensors each contain a single pyridyl-amine-thiol metal-binding moiety, form 1:1 complexes with Hg(II), and exhibit selectivity for Hg(II) over other Group 12 metals, alkali and alkaline earth metals, and most divalent first-row transition metals. Both dyes display superior brightness (Phi x epsilon) and fluorescence enhancement following Hg(II) coordination in aqueous solution. At neutral pH, the fluorescence turn-on derives from greater brightness due to increased molar absorptivity. At higher pH, photoinduced electron transfer quenching of the free dye is enhanced, and the Hg(II)-induced turn-on also benefits from alleviation of this pathway. MS2 can detect ppb levels of Hg(II) in aqueous solution, demonstrating its ability to identify environmentally relevant concentrations of Hg(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号