首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemisorption, from aqueous solutions, of hydroquinone and benzoquinone onto well-defined Pd(111) and Pd(100) electrode surfaces has been studied by tandem electrochemistry, high-resolution electron energy loss spectroscopy and in situ scanning tunneling microscopy. The results indicate that hydroquinone is oxidatively chemisorbed to form a quinonoid species that is oriented parallel to the surface but with a slight tilt in which one of the para-oxygens is topographically just higher than the other. The same surface species is obtained when adsorption is from aqueous benzoquinone.  相似文献   

2.
The chemisorption of 2,5-dihydroxybenzenesulfonate (hydroquinone sulfonate, HQS) from dilute aqueous solutions, onto a well-defined Pd(111) electrode surface has been studied by a combination of Auger electron spectroscopy, high-resolution electron energy loss spectroscopy, scanning tunneling microscopy and electrochemistry. The results indicate that HQS is oxidatively chemisorbed and exists on the surface as benzoquinone sulfonate (BQS); it is oriented essentially parallel to the surface with a slight tilt due to the bulky SO3 group. The H+ counter-ions in the ionic adlayer can be exchanged reversibly and quantitatively by K+ or Cs+ ions without changes in the structure and coverage of the surface-anchored species.  相似文献   

3.
The influence of orientation on the electrocatalytic hydrogenation of hydroquinone (HQ) chemisorbed at smooth polycrystalline platinum electrodes in aqueous solutions has been investigated; experimental measurements, performed in the absence of bulk (unadsorbed) HQ, were based upon thin-layer electrochemical techniques. The extent of hydrogenation was characterized by (i) nH. the average number of hydrogen atoms reacted per chemisorbed HQ molecule, and (ii) the electrolytic charge Qox for oxidation of chemisorbed organic which remained on the surface after the hydrogenation reaction. The measured values of nH indicate that the extent of HQ hydrogenation is (i) dependent upon the potential EHyd at which hydrogenation was earned out, and (ii) a sensitive function of its initial adsorbed orientation; at a given EHyd, nHis larger in the flat (η6) than in the edge (2,3-η2) orientation. Correlation of Qox with nH, indicates that an appreciable fraction of partially hydrogenated species is desorbed from the surface; this fraction, which is a function of EHyd, is larger in the 2.3-η2 than in the η6 orientation.  相似文献   

4.
The electrochemical kinetics of the benzoquinone (Q)/hydroquinone (H2Q) redox couple at platinum electrodes in aqueous solutions has been found to be extremely sensitive to the nature of species adsorbed on the electrode surface at monolayer coverages. Experimental measurements were based on thin-layer cyclic voltammetry; the use of thin-layer electrodes was dictated by the need to minimize surface contamination. Bulky neutral or anionic aromatic adsorbates led to the familiar U-shaped rate-vs.-pH curves; the rate minimum occurred near pH 4. Kinetic effects due to oriental changes of chemisorbed species were noted only when the rate was low. Adsorbed 1 atoms led to comparatively rapid reactivity (rate constant k° > 10?3 cm s?1) and virtual independence of pH. Profound retardation resulted from pretreatment ofthe surface with CN? and SCN?; total irreversibility (k° < 10?6 cm s?1) was observed at pH 4, with a further decrease in rate at pH 7. In contrast, when the surface contained n layer of chemisorbed phenyltriethylammonium cations, the electrode rate increased with increasing pH. The results indicate that different reaction pathways predominate when different absorbates are present.  相似文献   

5.
The first stages of the anodic oxidation of polycrystalline copper electrodes in NaOH solutions were studied by potential sweep voltammetry and ellipsometry. Formation of bulk Cu2O was found to be preceded by electrosorption of oxygen species, that occurs in two successive stages, each represented by a current peak, corresponding to a different submonolayer state with a different adsorption energy. This surface oxide was formed via random electrodeposition. The width of the first current peak indicates the presence of lateral attractive interactions in the chemisorbed layer. The surface layer did not show any ageing effect.  相似文献   

6.
The benzoquinone/hydroquinone (Q/H(2)Q) redox reaction has been studied by electrochemical-scanning tunneling microscopy (EC-STM) at a Pd(111)-(square3xsquare3)R30 degrees -I electrode surface in a solution that contained 10(-4) M H(2)Q in 0.05 M H(2)SO(4); iodine-pretreatment of the Pd(111) surface was to prevent chemisorption of organic-derived species. The molecule-resolved EC-STM images indicated that: (i) at a potential where only H(2)Q is present in solution, a self-assembled (square21xsquare21)R10.9 degrees -eta(6)-H(2)Q monolayer is produced in which the H(2)Q molecules are oriented parallel to the surface; (ii) at a potential where partial oxidation (to Q) occurs, a self-assembled (square21xsquare21)R10.9 degrees -eta(6)-QH adlayer is generated, where QH represents quinhydrone, an equimolar mixture of Q and H(2)Q; in this structure, the Q and H(2)Q molecules are oriented vertically, face-to-face, and arranged alternately along a given row, reminiscent of the crystal structure of quinhydrone. The partial oxidation-induced molecular reorientation, which is reversible, most likely arises from favorable Q-H(2)Q face-to-face interactions; that is, complete oxidation would yield only flat-oriented Q species. Unfortunately, at potentials where only Q would be present in solution, I-catalyzed corrosion of the Pd starts to occur, which leads to noise-laden EC-STM images. Copyright 2001 Academic Press.  相似文献   

7.
The potentials of the anodic peak of ascorbic acid oxidation and the potential differences of anodic and cathodic peaks (ΔE p) of the hydroquinone/benzoquinone redox system at an electrode made of a graphite-epoxy composite are determined in weakly acidic and neutral supporting electrolytes by direct and cyclic voltammetry. The results obtained are compared with thermodynamic values and with the available values of these parameters at different solid electrodes for the above-mentioned redox systems. The effect of aging of the surface of electrodes made of graphite-epoxy composites on the potentials and peak currents of the anodic oxidation of ascorbic acid are studied. It is demonstrated that the regeneration of the electrode surface by mechanically cutting thin layers is important for reducing the δE p value of the hydroquinone/benzoquinone redox system down to 28–30 mV in supporting electrolytes with pH 2.0 and 7.0. This value is typical of thermodynamically reversible electrode reactions involving two-electron transfer at 20–25°C.  相似文献   

8.
A novel way to produce ultrathin transparent carbon layers on tin‐doped indium oxide (ITO) substrates is developed. The ITO surface is coated with cellulose nanofibrils (from sisal) via layer‐by‐layer electrostatic binding with poly(diallyldimethylammonium chloride) or PDDAC acting as the binder. The cellulose nanofibril‐PDDAC composite film is then vacuum‐carbonised at 500 °C. The resulting carbon films are characterised by atomic force microscopy (AFM), small angle X‐ray scattering (SAXS), wide‐angle X‐ray scattering (WAXS), and Raman methods. Smooth carbon films with good adhesion to the ITO substrate are formed. The electrochemical characterisation of the carbon films is based on the oxidation of hydroquinone and the reduction of benzoquinone in aqueous phosphate buffer media. A modest effect of the cellulose nanofibril‐PDDAC film on the rate of electron transfer is observed. The effect of the film on the rate of electron transfer after carbonisation is more dramatic. For a 40‐layer cellulose nanofibril‐PDDAC film after carbonisation a two‐order of magnitude change in the rate of electron transfer occurs presumably due to a better interaction of the hydroquinone/benzoquinone system with the electrode surface.  相似文献   

9.
A set of supported ruthenium complexes with systematically varied ratios of chemisorbed to physisorbed species was formed by contacting cis‐[Ru(acac)2(C2H4)2] ( I ; acac=C5H7O2?) with dealuminated zeolite Y. Extended X‐ray absorption fine structure (EXAFS) spectra used to characterize the samples confirmed the systematic variation in the loadings of the two supported species and demonstrated that removal of bidentate acac ligands from I accompanied chemisorption to form [Ru(acac)(C2H4)2]+ attached through two Ru? O bonds to the Al sites of the zeolite. A high degree of uniformity in the chemisorbed species was demonstrated by sharp bands in the infrared (IR) spectrum characteristic of ruthenium dicarbonyls that formed when CO reacted with the anchored complex. When the ruthenium loading exceeded 1.0 wt % (Ru/Al≈1:6), the additional adsorbed species were simply physisorbed. Ethene ligands on the chemisorbed species reacted to form butenes when the temperature was raised to approximately 393 K; acac ligands remained bonded to Ru. In contrast, ethene ligands on the physisorbed complex simply desorbed under the same conditions. The chemisorption activated the ruthenium complex and facilitated dimerization of the ethene, which occurred catalytically. IR and EXAFS spectra of the supported samples indicate that 1) Ru centers in the chemisorbed species are more electron deficient than those in the physisorbed species and 2) Ru–ethene bonds in the chemisorbed species are less symmetric than those in the physisorbed species, which implies the presence of a preferred configuration for the catalytic dimerization.  相似文献   

10.
Temperature-programmed reaction spectroscopy (TPRS) and direct, isothermal reaction-rate measurements were employed to investigate the oxidation of CO on Pt(111) covered with high concentrations of atomic oxygen. The TPRS results show that oxygen atoms chemisorbed on Pt(111) at coverages just above 0.25 ML (monolayers) are reactive toward coadsorbed CO, producing CO(2) at about 295 K. The uptake of CO on Pt(111) is found to decrease with increasing oxygen coverage beyond 0.25 ML and becomes immeasurable at a surface temperature of 100 K when Pt(111) is partially covered with Pt oxide domains at oxygen coverages above 1.5 ML. The rate of CO oxidation measured as a function of CO beam exposure to the surface exhibits a nearly linear increase toward a maximum for initial oxygen coverages between 0.25 and 0.50 ML and constant surface temperatures between 300 and 500 K. At a fixed CO incident flux, the time required to reach the maximum reaction rate increases as the initial oxygen coverage is increased to 0.50 ML. A time lag prior to the reaction-rate maximum is also observed when Pt oxide domains are present on the surface, but the reaction rate increases more slowly with CO exposure and much longer time lags are observed, indicating that the oxide phase is less reactive toward CO than are chemisorbed oxygen atoms on Pt(111). On the partially oxidized surface, the CO exposure needed to reach the rate maximum increases significantly with increases in both the initial oxygen coverage and the surface temperature. A kinetic model is developed that reproduces the qualitative dependence of the CO oxidation rate on the atomic oxygen coverage and the surface temperature. The model assumes that CO chemisorption and reaction occur only on regions of the surface covered by chemisorbed oxygen atoms and describes the CO chemisorption probability as a decreasing function of the atomic oxygen coverage in the chemisorbed phase. The model also takes into account the migration of oxygen atoms from oxide domains to domains with chemisorbed oxygen atoms. According to the model, the reaction rate initially increases with the CO exposure because the rate of CO chemisorption is enhanced as the coverage of chemisorbed oxygen atoms decreases during reaction. Longer rate delays are predicted for the partially oxidized surface because oxygen migration from the oxide phase maintains high oxygen coverages in the coexisting chemisorbed oxygen phase that hinder CO chemisorption. It is shown that the time evolution of the CO oxidation rate is determined by the relative rates of CO chemisorption and oxygen migration, R(ad) and R(m), respectively, with an increase in the relative rate of oxygen migration acting to inhibit the reaction. We find that the time lag in the reaction rate increases nearly exponentially with the initial oxygen coverage [O](i) (tot) when [O](i) (tot) exceeds a critical value, which is defined as the coverage above which R(ad)R(m) is less than unity at fixed CO incident flux and surface temperature. These results demonstrate that the kinetics for CO oxidation on oxidized Pt(111) is governed by the sensitivity of CO binding and chemisorption on the atomic oxygen coverage and the distribution of surface oxygen phases.  相似文献   

11.
《Chemical physics letters》2002,350(3-4):440-446
Surface-enhanced Raman scattering (SERS) spectra of pyridine adsorbed onto bare platinum and nickel electrodes in nonaqueous solutions are reported in this Letter. There are similarities and differences between the SERS from aqueous and nonaqueous solutions. The surface enhancement factor for platinum in acetonitrile solution has been calculated to decrease by a factor of ca. 10 compared with that in the aqueous media. The double-band character for the ring breathing mode is observed at 1009 and 1019 cm−1. Two adsorption modes of pyridine on the platinum surface were assumed. Part of the pyridine molecules may be chemisorbed onto the surface, with the ring plane oriented vertical to the surface; other pyridine molecules may co-adsorb with lithium cations onto the surface.  相似文献   

12.
Poly(caffeic acid) polymer was immobilized onto the surface of a glassy carbon electrode via electropolymerization. Voltammetry shows a signal related to the two‐electron oxidation of the immobilized hydroquinone groups in the caffeic acid monomer units. The modified electrode in aqueous solution shows complexation of the electrogenerated o‐quinone species with melamine thus allowing in the electrochemical detection of melamine by recording the shift in potential of the oxidation signal of the polymer. Melamine detection was investigated in pure aqueous solutions and in the presence of milk powder solutions and the proposed analytical method of melamine detection in milk powder was applied successfully with an average recovery of ca. (91±7.9)%.  相似文献   

13.
A variety of electrochemical approaches has been used to investigate the adsorption of NAD+, NADH and the NAD-NAD dimer from aqueous solution at glassy carbon electrodes (GCE) with supplementary studies of adsorption at pyrolytic graphite and platinum electrodes from aqueous media and at GCE from DMSO solution. The following hypotheses are advanced concerning the adsorption orientation: at carbon electrodes, on which NADH is not adsorbed, NAD+ produced by anodic oxidation of the NADH is first rapidly adsorbed in a planar configuration relative to the electrode surface, which is probably bound to the surface through the adenine moiety; there is then a relatively slow reorientation of the adsorbed NADH molecules to a perpendicular orientation relative to the electrode surface, which adsorbate is more tightly bound to the surface than the planar oriented adsorbate and which likely involves interaction between parallel adenine and pyridinium rings. Reduction (one-electron process) of NAD+ at the GCE produces the NAD-NAD dimer, which, at a clean electrode surface, involves a diffusion-controlled process and an adsorption-controlled process; the latter is due to formation of adsorbed dimer, which is more strongly adsorbed than NAD+. The dimer is oxidized at the GCE only if it is adsorbed. The factors controlling and involved in the adsorption processes have been examined with particular reference to the use of anodic voltammetry for the analytical determination of NADH.  相似文献   

14.
The adsorption of aromatic compounds onto activated carbons and carbon nanofibers is of considerable technical importance and beneficial in electroanalytical procedures. Here, effects due to the strong adsorption of hydroquinone, benzoquinone, and phenol onto carbon nanofiber electrodes immersed in aqueous media are reported. Carbon nanofiber materials (fiber diameter approximately 100 nm) are grown onto ceramic fiber substrates by employing an ambient pressure chemical vapour deposition process. The resulting composite electrode material is sufficiently electrically conducting due to the high carbon content and mechanically robust due to the ceramic backbone. It is shown that the voltammetric signal obtained for the one electron reduction of Ru(NH3)63+ is dominated by solution trapped in the three-dimensional electrode structure. In contrast, for the hydroquinone/benzoquinone redox system in aqueous phosphate buffer (pH 7) strong adsorption onto the carbon nanofiber material is observed. In the presence of phenol also strong adsorption is detected. In the course of the chemically irreversible oxidation of phenol in aqueous phosphate buffer (pH 7), the formation of multi-electron oxidation products related to benzoquinone is observed. The pathway for the oxidation process is attributed to (i) the high surface area of the carbon nanofiber electrode and (ii) the adsorption of intermediates.  相似文献   

15.
Adsorption and oxidation of dimethyl ether (DME) on the Pt/Pt electrode from 0.5 M H2SO4 is studied by measuring transients of current and potential, charging curves, and curves of electrooxidation in the adsorbed layer and also by cyclic voltammetry and steady-state polarization measurements. The DME adsorption is accompanied by dehydrogenation and destruction of its molecules to form a chemisorbed adsorbate that mainly consists of C1 species (HCOads and/or COads) with (under certain conditions) a small amount of species that desorb at cathodic polarization. The adsorption and electrooxidation of DME are inhibited by adsorbed oxygen. The possible schemes of DME oxidation, where the reaction of DME chemisorption products with adsorbed oxygen-containing species is the limiting stage, are discussed.  相似文献   

16.
The interactions between phenol molecules and activated carbons were investigated in order to understand the adsorption mechanism of this aromatic compound. A series of activated carbons with varied chemical composition but similar porous features were synthesized and submitted to phenol exposure from aqueous phase, followed by thermogravimetric analysis and identification of the desorbed species by temperature programmed desorption coupled with mass spectrometry. Based on these experiments, both physi- and chemisorption sites for phenol were identified on the activated carbons. Our results demonstrate that physisorption of phenol depends strictly on the porosity of the activated carbons, whereas chemisorption depends on the availability of the basal planes in the activated carbons. Thus, oxidation of the carbon can suppress the fraction of chemisorbed phenol since the surface functionalities incorporate to the edges of the basal planes; notwithstanding, hydrophilic carbons may present a small but not negligible contribution of chemisorbed phenol depending on the extent of the functionalization. Moreover, these adsorption sites (chemi-) are recovered by simply removal of the surface functionalities after thermal annealing.  相似文献   

17.
《Electroanalysis》2005,17(19):1755-1760
Electrochemical oxidation of catechol has been studied in the presence of secondary amines as nucleophiles in aqueous solution with various pH values using cyclic voltammetry and differential pulse voltammetry. Cyclic voltammetry of catechol in pure buffered solution (2.00 pH<9.00) shows one anodic and corresponding cathodic peak which relates to the transformation of catechol to corresponding o‐benzoquinone and vice versa within a quasi‐reversible two electron transfer process. Also, a little amount of o‐benzoquinone undergoes polymerization reaction. Cyclic voltammogram of catechol in the presence of nucleophilic amines, show one anodic peak in the first scan of potential but on the reverse scan the corresponding cathodic peak disappear and new peak is observed at less positive potential. In the second scan of potential also a new anodic peak is observed. On the other hand at high concentration of amines the redox peak attributable to formed polymer disappear showing that in this condition the polymerization reaction occurs at non‐measurable extent. On the basis of these observations we propose an ECE mechanism for the electrochemical oxidation of catechol in the presence of secondary amines.  相似文献   

18.
段园  陈明树  万惠霖 《物理化学学报》2018,34(12):1358-1365
采用高分辨电子能量损失谱(HREELS)、俄歇电子能谱(AES)和低能电子衍射(LEED)研究镍单晶表面氧物种及CO与O2的共吸附。实验结果表明,Ni(111)表面氧化后存在两种氧物种,位于54 meV能量损失峰的表面化学吸附氧物种和位于69 meV能量损失峰的表面氧化镍。首先,随着暴露氧量的增加,表面化学吸附氧物种的能量损失峰蓝移至58 meV;其次,通过真空退火及与CO相互作用考察,发现表面化学吸附氧物种较不稳定。在室温条件下,表面预吸附形成的表面化学吸附氧物种与CO共吸附,导致端位吸附CO增多,表明氧优先吸附在穴位上,随着CO暴露量的增加化学吸附氧物种与CO反应脱去;而表面氧化镍需在较高温度和较高CO分压下才能被CO还原。预吸附CO可被氧逐渐移去。  相似文献   

19.
本文报道了6-巯基嘌呤存在时在水相中通过阳极氧化邻苯二酚来电化学合成5-(嘌呤-6-巯基)邻苯二酚衍生物。循环伏安法和控制电位电解的结果表明该类化合物的形成为EC过程,即邻苯二酚衍生物原料先是被电化学氧化成对应的邻苯醌衍生物,该醌非常活泼,进一步与6-巯基嘌呤发生迈克尔加成反应,原位转化生成化合物3a-3d。该工作进一步证明了水相中邻苯醌衍生物的电化学合成与原位转化是合成邻苯二酚衍生物的重要方法。  相似文献   

20.
The paper presents the results of an experimental study on oxidation at boron doped diamond electrodes (BDD) of some phenolic compounds: phenol (PH), para-hydroxibenzoic acid (PHB), cathecole (CT), hydroquinone (HQ) are considered, singularly contained in aqueous solutions or in the presence of glucose (G), which was selected to represent the class of biodegradable compounds. Oxidation of benzoquinone (BQ) and maleic acid (MA), generally detected as intermediates products from phenol degradation, is also investigated. Great attention is paid to verify the feasibility of a selective process in which the oxidation is specifically addressed to the phenolic fraction up to non toxic intermediate products which are more biodegradable than the original phenols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号