首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A permselective membrane is a critical component that defines the linear detection limits, the sensitivity, and thus the ultimate efficacy of an enzymatic biosensor. Although membranes like epoxy‐polyurethane (epoxy‐PU) and Nafion are widely used and provide the desired glucose detection limits of 2 to 30 mM, both the within batch and batch‐to‐batch variability of sensors that use these materials is a concern. The hypothesis for this study was that a crosslinked hydrogel would have a sufficiently uniform porosity and hydrophilicity to address the variability in sensor sensitivity. The hydrogel was prepared by crosslinking di‐hydroxyethyl methacrylate, hydroxyethyl methacrylate and N‐vinyl pyrrolidone with 2.5 mol% ethylene glycol dimethacrylate using water soluble initiators – ammonium persulfate and sodium metabisulfite under a nitrogen atmosphere. The hydrogel was applied to the sensor by dip coating during polymerisation. Electrochemical measurements revealed that the response characteristics of sensors coated with this membrane are highly consistent. Scanning electrochemical microscopy (SECM) was used to spatially resolve glucose diffusion through the membrane by measuring the consequent H2O2 release and compared with an epoxy‐PU membrane. Hydrogen peroxide measurements using SECM revealed that the epoxy‐PU membranes had uneven lateral diffusion profiles compared to the uniform profile of the hydrogel membranes. The uneven diffusion profiles of epoxy‐PU membranes are attributed to a fabrication method that results in uneven membrane properties, while the uniform diffusion profiles of the hydrogel membranes are primarily dictated by their uniform pore size.  相似文献   

2.
《Analytical letters》2012,45(7):1158-1172
Abstract

A disposable glucose biosensor is developed by immobilizing glucose oxidase into silver nanoparticles-doped silica sol-gel and polyvinyl alcohol hybrid film on a Prussian blue-modified screen-printed electrode. The silver nanoparticles-enhanced biosensor shows a linear amperometric response to glucose from 1.25 × 10?5 to 2.56 × 10?3 with a sensitivity of 20.09 mA M?1 cm?2, which is almost double that of the biosensors without silver nanoparticles. The immobilized glucose oxidase retained 91% of its original activity after 30 days of storage in phosphate buffer (pH 6.9; 0.1 M) at 4°C. Blood glucose in a rabbit serum sample was successfully measured with the biosensor.  相似文献   

3.
《Electroanalysis》2005,17(24):2239-2245
The characteristics of a multiuse planar amperometric biosensor modified with Nafion and/or polyion membrane were investigated. A new enzyme immobilization process was proposed, in which the polyvinyl alcohol bearing a styrylpyridinium (SbQ)/glucose oxidase composite was treated with glutaraldehyde vapor prior to the photocrosslinking reaction. The resulting planar enzyme electrode remains active for at least 150 days. Compared with poly‐L ‐lysine/poly (4‐stryenesulfonate) polyion complex membrane the Nafion membrane showed marked effect to reduce the electrochemical response of the modified planar enzyme electrode to the biological interferents, such as ascorbic acid and uric acid. Furthermore, Nafion membrane can effective restricting the oxidized anionic interferent to adhear on its surface, thereby the fouling of the electrode was avoided.  相似文献   

4.
以三庚基十二烷基碘代季铵盐为电活性物质的PVC膜电极, 对过氧化氢和六价钼的络合物具有良好的电位响应. 将葡萄糖氧化酶固定到PVC膜电极表面, 制备成电位式葡萄糖传感器. 在优化的实验条件下, 该传感器在葡萄糖浓度为2×10-4~5×10-3 mol/L范围内有线性响应, 检测下限为5×10-5 mol/L. 另外该传感器具有较高的稳定性和良好的选择性, 抗坏血酸、尿酸和一些氨基酸未对测定产生干扰.  相似文献   

5.
黄美荣  丁永波  李新贵 《化学进展》2012,24(8):1560-1571
价格低廉、携带方便、适用浓度宽、操作简单快捷、能耗低的离子选择电极在医院、分析实验室、野外等领域得到了越来越广泛的应用。尽管如此,由于PVC膜中存在的离子流严重破坏了更低检测下限的获取,限制了离子选择电极的进一步发展。因此,本文从减小甚至消除PVC膜中存在的离子流角度出发,系统论述了优化PVC膜离子选择电极检测下限的原理和优良策略,根据收集归纳的大量数据定量阐述传感膜组成的优化、电极组装和调制、应用旋转电极以及电流极化处理等对检测下限的优化提升作用,进一步总结出各种方法的改善规律,分析它们的优势和面临的问题。提出在PVC铸膜液中要突破传统配方,减小增塑剂和离子交换剂用量,以抑制传感膜两侧的离子流,同时外加电流补偿处理等也是降低电极检测下限的有效方法,对检测下限的改善最好的可降低5个数量级。这一总结为PVC膜离子选择电极的高性能化明确了研究方向。  相似文献   

6.
《Analytical letters》2012,45(7):1173-1183
Abstract

An amperometric glucose biosensor based on the detection of the reduction of oxygen has been developed by combining an aminated glassy carbon electrode with a polystyrene (PS) membrane containing glucose oxidase (GOD) micelles. The structure of GOD micelles contained in PS membrane was observed by scanning electron microscope. The micelle has a roughly spherical shape, and the enzyme colony is contained inside the micelle. This glucose sensor exhibited good sensitivity with short response time (within 2 min). A good linear relationship was observed in the concentration range of 0.2 mM to 2.6 mM when the applied potential was ? 0.45 V vs. Ag/AgCl.  相似文献   

7.
《Analytical letters》2012,45(7):1143-1157
Abstract

A potentially implantable glucose biosensor for continuous monitoring of glucose levels in diabetic patients has been developed. The glucose biosensor is based on an amperometric oxygen electrode and Glucose Oxidase immobilized on carbon powder held in a form of a liquid suspension. The enzyme material can be replaced (the sensor recharged) without sensor disassembly. Glucose diffusion membranes from polycarbonate (PC) and from polytetrafluorethylene (PTFE) coated with silastic are used.

Sensors were evaluated continuously operating in phosphate buffer solution and in undiluted blood plasma at body temperature. Calibration curves of the sensors were periodically obtained. The sensors show stable performance during at least 1200 hours of operation without refilling of the enzyme. The PTFE membrane demonstrates high mechanical stability and is little effected by long-term operation in undiluted blood plasma.  相似文献   

8.
《Electroanalysis》2004,16(20):1697-1703
An amperometric glucose biosensor based on multi‐walled carbon nanotube (MWCNT) modified glassy carbon electrode has been developed. MWCNT‐modified glassy carbon electrode was obtained by casting the electrode surface with multi‐walled carbon nanotube materials. Glucose oxidase was co‐immobilized on the MWCNT‐modified glassy carbon surface by electrochemical deposition of poly(o‐phenylenediamine) film. Enhanced catalytic electroreduction behavior of oxygen at MWCNT‐modified electrode surface was observed at a potential of ?0.40 V (vs. Ag|AgCl) in neutral medium. The steady‐state amperometric response to glucose was determined at a selected potential of ?0.30 V by means of the reduction of dissolved oxygen consumed by the enzymatic reaction. Common interferents such as ascorbic acid, 4‐acetamidophenol, and uric acid did not interfere in the glucose determination. The linear range for glucose determination extended to 2.0 mM and the detection limit was estimated to be about 0.03 mM.  相似文献   

9.
《Analytical letters》2012,45(10):2079-2094
Abstract

A potentially implantable glucose biosensor for measuring blood or tissue glucose levels in diabetic patients has been developed. The glucose biosensor is based on an amperometric oxygen electrode and immobilized glucose oxidase enzyme, in which the immobilized enzyme can be replaced (the sensor recharged) without surgical removal of the sensor from the patient. Recharging of the sensor is achieved by injecting fresh immobilized enzyme into the sensor using a septum. A special technique for immobilization of the enzyme on Ultra-Low Temperature Isotropic (ULTI) carbon powder held in a liquid suspension has been developed.

In vitro studies of the sensors show stable performance during several recharge cycles over a period of 3 months of continuous operation.

Diffusion membranes which ensure linear dependence of the sensor response on glucose concentration have been developed. These membranes comprise silastic latex-rubber coatings over a microporous polycarbonate membrane. Calibration curves of the amperometric signal show linearity over a wide range of glucose concentrations (up to 16 mM), covering hypoglycemic, normoglycemic and hyperglycemic conditions.

The experimental results confirm the suitability of the sensors for in vitro measurements in undiluted human sera.  相似文献   

10.
鱼鳔膜为基质的生物传感器测定葡萄糖的研究   总被引:1,自引:0,他引:1  
贾文娟  崔淼  张彦  双少敏 《分析化学》2011,(9):1423-1426
以鱼鳔膜为基质同定葡萄糖氧化酶,偶联氧电极,构建了葡萄糖生物传感器,通过测定溶解氧浓度的变化定量测定葡萄糖.考察了酶浓度、pH值、缓冲液浓度对传感器的影响,优化了实验条件:即酶浓度为1 mg,pH 7.0,缓冲液浓度为100 mmol/L.此传感器具有较宽的线性范围(0.016~1.2 mmol/L),较短的响应时间(...  相似文献   

11.
纳米铜颗粒-酶-复合功能敏感膜生物传感器   总被引:10,自引:0,他引:10  
任湘菱  唐芳琼 《催化学报》2000,21(5):455-458
用水合联肼作还原剂研制成亲水纳米铜颗粒,用琥珀酸二异酯磺酸钠/丙三醇/正庚烷反胶束体系合成出憎水纳米铜颗粒,并通过透射电镜和紫外光谱考察了制得的纳米颗粒样品,用憎水纳米铜颗粒及亲水纳米铜颗粒与聚 烯醇缩丁醛构成复合固酶膜基质,用溶胶-凝胶法固定葡萄糖氧化酶,构建葡萄糖生物传感器,实验结果表明,纳米铜颗粒可大幅度提高固定化酶的催化活性,响应电流从相应浓度的几十纳安增强到几千纳安,从理论和实验上证明了  相似文献   

12.
An osmium redox hydrogel mediated biosensor for continuous monitoring of glucose extracted from subcutaneous solution by reverse iontophoresis has been developed. For the measurement of low concentration glucose, osmium‐poly(vinylpyridine) wiring horseradish peroxidase was introduced to modify the smooth Au electrodes, and the developed glucose biosensor exhibited a high sensitivity of 11.45 nA μM?1 cm?2 and a low detection limit of 2 μM, as well as a high operational stability of more than 97% of its initial activity over a test period of 13.5 h in stirred glucose solution at low applied potential (?0.1 V vs. Ag|AgCl), efficiently inhibiting the electroactive interferences. Permeability of the hydrogels was studied and a diffusion coefficient of 2.4×10?5 cm2/s for H2O2 was obtained. In addition, the effects, such as temperature and the variation happening on Ag|AgCl counter electrode, on determination of glucose were also considered. The proof‐of‐feasibility of the biosensors for the monitoring of the glucose extracted from the subcutaneous solution was tested in vitro, and the responses of the sensors were analyzed. A linear response to current produced by extracted glucose in the concentration range of subcutaneous glucose from 1.0 to 12 mM was obtained with a correlation coefficient up to 0.989. These results testify the feasibility of the developed sensors for measuring the low concentration glucose and have significance for the development of noninvasive glucose monitoring system for the control of diabetes.  相似文献   

13.
《Electroanalysis》2003,15(7):608-612
A new type of organically modified sol‐gel/chitosan composite material was developed and used for the construction of glucose biosensor. This material provided good biocompatibility and the stabilizing microenvironment around the enzyme. Ferrocene was immobilized on the surface of glassy carbon electrode as a mediator. The characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The effects of enzyme‐loading, buffer pH, applied potential and several interferences on the response of the enzyme electrode were investigated. The simple and low‐cost glucose biosensor exhibited high sensitivity and good stability.  相似文献   

14.
One of the major problems in amperometric biosensors based on detection of H2O2 produced by enzymatic reaction between oxidase enzymes and substrate is the interference of redox active compounds such as ascorbic acid (AA), dopamine (DA) and uric acid (UA). To minimize these interferences, sodium bismuthate was used for the first time as an insoluble pre‐oxidant in the flow injection (FI) amperometric glucose biosensor at a Glucose oxidase (GOx) immobilized Pt/Pd bimetallic modified pre‐anodized pencil graphite electrode (p.PGE). In this context, these interfering compounds were injected into a flow injection analysis (FIA) system using an injector which was filled with NaBiO3. Thus, these interferents were converted into their redox inactive oxidized forms before reaching the electrode in the flow cell. While glucose was not influenced by the pre‐oxidant in the injector, the huge oxidation peak currents of the interferents decreased significantly in the biosensor. FI amperometric current time curves showed that the AA, DA and UA were minimized by 96 %, 86 %, and 98 % respectively, in the presence of an equivalent concentration of interferences in a 1.0 mM glucose solution. The proposed FI amperometric glucose biosensor exhibits a wide linear range (0.01–10 mM, R2=0.9994) with a detection limit of 2.4×10?3 mM. Glucose levels in the artificial serum and two real samples were successfully determined using the fabricated FI amperometric biosensor.  相似文献   

15.
将纳米金胶(AuNPs)和羟基磷灰石(HAp)按一定比例混合制备了新型复合膜用于葡萄糖氧化酶(GOD)的固定,构建了高灵敏的葡萄糖传感器。由于纳米金胶的存在,葡萄糖氧化酶的直接电化学性质得以增强,在去除氧气的PBS(pH 7.0)介质中,固定在复合膜内的GOD表现出一对良好的氧化还原峰。在饱和氧气条件下,当加入一定量的葡萄糖时,由于GOD催化葡萄糖氧化消耗溶液中的溶解氧,-0.8 V处溶解氧的还原峰电流降低,且峰电流降低的量与葡萄糖浓度在0.02~1.62 mmol/L范围内呈线性相关,检出限为5.0μmol/L,检测灵敏度达9.91 mA.mol-1.L,可实现对葡萄糖的快速检测。  相似文献   

16.
新型PVC膜涂丝诺氟沙星选择电极的研制与应用   总被引:2,自引:0,他引:2  
制备了一种稳定性和重现性均良好的新型PVC膜涂丝诺氟沙星选择电极 ,该电极是以Ag/AgCl丝为基体 ,在其表面先涂一层含Cl-的脲醛树脂 ,然后再涂一层含硅钨酸 -诺氟沙星离子缔合物的PVC膜。采用正交设计法 ,研究了离子缔合物的种类、活性物在膜中的含量及增塑剂3因素对电极的影响。电极的线性范围为7.9×10 -5~1.0×10 -2mol·L -1 ,检出限为2.5×10 -5mol·L -1,斜率为35.7mV/decade(30℃) ,可直接用于诺氟沙星胶囊的含量测定 ,回收率为99 %~102 % ,结果与中国药典法基本一致。  相似文献   

17.
《Electroanalysis》2004,16(3):190-198
Gold nanotubular electrode ensembles were prepared by using electroless deposition of the metal within the pores of polycarbonate particle track‐etched membranes. Glucose oxidase (Gox), used as a model enzyme, has been immobilized onto preformed self‐assembled monolayers (mercaptoethylamine or mercaptopropionic acid) on electroless gold via cross‐linking with glutaraldehyde or covalent attachment by carbodiimide coupling. Flow‐injection analysis systems in flow‐through or wall‐jet configurations using these Gox‐modified nanoelectrodes are described. The influence of different experimental parameters (i.e., applied potential, flow rate, interferents…?) on the analytical response of the sensor to glucose has been evaluated. Under optimized conditions, very reproducible results (standard deviations <4%, n=38) were obtained, linear calibration was achieved in the 2×10?4 M to 3×10?2 M concentration range and the detection limit was 2×10?4 M. Moreover, no significant interferences from species like ascorbic and uric acids were observed at a potential of +0.9 V.  相似文献   

18.
《Electroanalysis》2018,30(8):1642-1652
A newly developed amperometric glucose biosensor based on graphite rod (GR) working electrode modified with biocomposite consisting of poly (pyrrole‐2‐carboxylic acid) (PCPy) particles and enzyme glucose oxidase (GOx) was investigated. The PCPy particles were synthesized by chemical oxidative polymerization technique using H2O2 as initiator of polymerization reaction and modified covalently with the GOx (PCPy‐GOx) after activation of carboxyl groups located on the particles surface with a mixture of N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride (EDC) and N‐hydroxysuccinimide (NHS). Then the PCPy‐GOx biocomposite was dispersed in a buffer solution containing a certain amount of bovine serum albumin (BSA). The resulting biocomposite suspension was adsorbed the on GR electrode surface with subsequent solvent airing and chemical cross‐linking of the proteins with glutaraldehyde vapour (GR/PCPy‐GOx). It was determined that the current response of the GR/PCPy‐GOx electrodes to glucose measured at +300 mV vs Cl reference electrode was influenced by the duration of the PCPy particles synthesis, pH of the GOx solution used for the PCPy particles modification and the amount of immobilized PCPy‐GOx biocomposite. An optimal pH of buffer solution for operation of the biosensor was found to be 8.0. Detection limit was determined as 0.039 mmol L−1 according signal to noise ratio (S/N: 3). The proposed glucose biosensor was tested in human serum samples.  相似文献   

19.
《Analytical letters》2012,45(3):615-629
Abstract

In this study, a new ion-selective electrode for Sm3+ is described, illustrating 2-[(E)-1-(1H-pyrrol-2-yl)methylidene]-1-hydrazinecarbothioamide (PMH) in a poly(vinylchloride) (PVC) membrane with nitrobenzene (NB) as a plasticizer and sodium tetraphenyl borate (NaTPB) as an anionic additive. The proposed sensor exhibited a Nernstian response for Sm3+ ions over a wide concentration range between 1.0 × 10?2 and 1 × 10?6 M, with a detection limit of 5.2 × 10?7 M in the pH range of 4.2–8.5. Moreover, the sensor displayed the Nernstian slope of 19.8 ± 0.3 mV per decade, having a fast response time within 10 s over the entire concentration range. This electrode presented very good selectivity and sensitivity toward the Sm3+ ions over a wide variety of cations, including alkali, alkaline earth, transition-metal, and heavy-metal ions. It was used as an indicator electrode in the potentiometric titration of Sm3+ ions with EDTA. The membrane sensor was also applied to the determination of fluoride ions in mouthwash samples.  相似文献   

20.
通过对螺旋型铂铱电极表面进行化学腐蚀和电化学沉积铂纳米粒子实现电极表面的重建和优化,研究了螺旋型铂铱电极在不同腐蚀时间和电沉积时间下的形貌及对过氧化氢(H2O2)的催化活性.对表面重建的工作电极涂覆氧化酶和半透膜,制备出了铂纳米粒子/葡萄糖氧化酶/环氧聚氨酯酶电极,并将其用作葡萄糖传感器的工作电极.传感器计时电流检测结果表明,表面重建后的酶电极传感器对葡萄糖的检测范围扩大为2~45 mmol/L,优于裸铂铱酶电极传感器,电流响应值和灵敏度得到明显提升,同时传感器还具有良好的稳定性和选择性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号