首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a two‐dimensional finite element model for simulating dynamic propagation of weakly dispersive waves. Shallow water equations including extra non‐hydrostatic pressure terms and a depth‐integrated vertical momentum equation are solved with linear distributions assumed in the vertical direction for the non‐hydrostatic pressure and the vertical velocity. The model is developed based on the platform of a finite element model, CCHE2D. A physically bounded upwind scheme for the advection term discretization is developed, and the quasi second‐order differential operators of this scheme result in no oscillation and little numerical diffusion. The depth‐integrated non‐hydrostatic wave model is solved semi‐implicitly: the provisional flow velocity is first implicitly solved using the shallow water equations; the non‐hydrostatic pressure, which is implicitly obtained by ensuring a divergence‐free velocity field, is used to correct the provisional velocity, and finally the depth‐integrated continuity equation is explicitly solved to satisfy global mass conservation. The developed wave model is verified by an analytical solution and validated by laboratory experiments, and the computed results show that the wave model can properly handle linear and nonlinear dispersive waves, wave shoaling, diffraction, refraction and focusing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper a semi‐implicit finite difference model for non‐hydrostatic, free‐surface flows is analyzed and discussed. It is shown that the present algorithm is generally more accurate than recently developed models for quasi‐hydrostatic flows. The governing equations are the free‐surface Navier–Stokes equations defined on a general, irregular domain of arbitrary scale. The momentum equations, the incompressibility condition and the equation for the free‐surface are integrated by a semi‐implicit algorithm in such a fashion that the resulting numerical solution is mass conservative and unconditionally stable with respect to the gravity wave speed, wind stress, vertical viscosity and bottom friction. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
An implicit finite volume model in sigma coordinate system is developed to simulate two‐dimensional (2D) vertical free surface flows, deploying a non‐hydrostatic pressure distribution. The algorithm is based on a projection method which solves the complete 2D Navier–Stokes equations in two steps. First the pressure term in the momentum equations is excluded and the resultant advection–diffusion equations are solved. In the second step the continuity and the momentum equation with only the pressure terms are solved to give a block tri‐diagonal system of equation with pressure as the unknown. This system can be solved by a direct matrix solver without iteration. A new implicit treatment of non‐hydrostatic pressure, similar to the lower layers is applied to the top layer which makes the model free of any hydrostatic pressure assumption all through the water column. This treatment enables the model to evaluate both free surface elevation and wave celerity more accurately. A series of numerical tests including free‐surface flows with significant vertical accelerations and nonlinear behaviour in shoaling zone are performed. Comparison between numerical results, analytical solutions and experimental data demonstrates a satisfactory performance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper a layer‐structured finite volume model for non‐hydrostatic 3D environmental free surface flow is presented and applied to several test cases, which involve the computation of gravity waves. The 3D unsteady momentum and mass conservation equations are solved in a collocated grid made of polyhedrons, which are built from a 2D horizontal unstructured mesh, by just adding several horizontal layers. The mesh built in such a way is unstructured in the horizontal plane, but structured in the vertical direction. This procedure simplifies the mesh generation and at the same time it produces a well‐oriented mesh for stratified flows, which are common in environmental problems. The model reduces to a 2D depth‐averaged shallow water model when one single layer is defined in the mesh. Pressure–velocity coupling is achieved by the Semi‐Implicit Method for Pressure‐Linked Equations algorithm, using Rhie–Chow interpolation to stabilize the pressure field. An attractive property of the model proposed is the ability to compute the propagation of short waves with a rather coarse vertical discretization. Several test cases are solved in order to show the capabilities and numerical stability of the model, including a rectangular free oscillating basin, a radially symmetric wave, short wave propagation over a 1D bar, solitary wave runup on a vertical wall, and short wave refraction over a 2D shoal. In all the cases the numerical results are compared either with analytical or with experimental data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
A numerical method is described that may be used to determine the propagation characteristics of weakly non‐hydrostatic non‐linear free surface waves over a general, bottom topography. In shallow water of constant undisturbed depth, such waves are equivalent to the familiar cnoidal waves characterized by sharp crests and relatively flat troughs. For a certain range of parameters, these propagate without change of form by virtue of the weakly non‐hydrostatic balance in the vertical momentum equation. Effectively, this counters the tendency for the non‐linearity in a purely hydrostatic theory to lead to a continuously deforming surface wave profile. The realistic representation furnished by cnoidal wave theory of free surface waves in the shallow near‐shore zone has led to its utilization in evaluating their propagation characteristics. Nonetheless, the classic analytical theory is inapplicable to the case of wave propagation over a sloping beach or off‐shore sand bar topography. Under these conditions, a local change in form of the surface wave profile is anticipated before the waves break and knowing this is required in order to evaluate fully the propagation process. The efficacy of the numerical method is first demonstrated by comparing the solution for water of constant depth with the evaluation of the analytical solution expressed in terms of the Jacobian elliptic function cn. The general method described in the paper is then illustrated by experiments to determine the change in profile of weakly non‐hydrostatic non‐linear surface waves propagating over bed forms representative of those found in shallow coastal seas. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
An implicit method is developed for solving the complete three‐dimensional (3D) Navier–Stokes equations. The algorithm is based upon a staggered finite difference Crank‐Nicholson scheme on a Cartesian grid. A new top‐layer pressure treatment and a partial cell bottom treatment are introduced so that the 3D model is fully non‐hydrostatic and is free of any hydrostatic assumption. A domain decomposition method is used to segregate the resulting 3D matrix system into a series of two‐dimensional vertical plane problems, for each of which a block tri‐diagonal system can be directly solved for the unknown horizontal velocity. Numerical tests including linear standing waves, nonlinear sloshing motions, and progressive wave interactions with uneven bottoms are performed. It is found that the model is capable to simulate accurately a range of free‐surface flow problems using a very small number of vertical layers (e.g. two–four layers). The developed model is second‐order accuracy in time and space and is unconditionally stable; and it can be effectively used to model 3D surface wave motions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Details are given of the development of a two‐dimensional vertical numerical model for simulating unsteady free‐surface flows, using a non‐hydrostatic pressure distribution. In this model, the Reynolds equations and the kinematic free‐surface boundary condition are solved simultaneously, so that the water surface elevation can be integrated into the solution and solved for, together with the velocity and pressure fields. An efficient numerical algorithm has been developed, deploying implicit parameters similar to those used in the Crank–Nicholson method, and generating a block tri‐diagonal algebraic system of equations. The model has been applied to simulate a range of unsteady flow problems involving relatively strong vertical accelerations. The results show that the numerical algorithm described is able to produce accurate predictions and is also easy to apply. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
The parallel implementation of an unstructured‐grid, three‐dimensional, semi‐implicit finite difference and finite volume model for the free surface Navier–Stokes equations (UnTRIM ) is presented and discussed. The new developments are aimed to make the code available for high‐performance computing in order to address larger, complex problems in environmental free surface flows. The parallelization is based on the mesh partitioning method and message passing and has been achieved without negatively affecting any of the advantageous properties of the serial code, such as its robustness, accuracy and efficiency. The key issue is a new, autonomous parallel streamline backtracking algorithm, which allows using semi‐Lagrangian methods in decomposed meshes without compromising the scalability of the code. The implementation has been carefully verified not only with simple, abstract test cases illustrating the application domain of the code but also with advanced, high‐resolution models presently applied for research and engineering projects. The scheme performance and accuracy aspects are researched and discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A three‐dimensional numerical model is presented for the simulation of unsteady non‐hydrostatic shallow water flows on unstructured grids using the finite volume method. The free surface variations are modeled by a characteristics‐based scheme, which simulates sub‐critical and super‐critical flows. Three‐dimensional velocity components are considered in a collocated arrangement with a σ‐coordinate system. A special treatment of the pressure term is developed to avoid the water surface oscillations. Convective and diffusive terms are approximated explicitly, and an implicit discretization is used for the pressure term to ensure exact mass conservation. The unstructured grid in the horizontal direction and the σ coordinate in the vertical direction facilitate the use of the model in complicated geometries. Solution of the non‐hydrostatic equations enables the model to simulate short‐period waves and vertically circulating flows. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A semi‐implicit, staggered finite volume technique for non‐hydrostatic, free‐surface flow governed by the incompressible Euler equations is presented that has a proper balance between accuracy, robustness and computing time. The procedure is intended to be used for predicting wave propagation in coastal areas. The splitting of the pressure into hydrostatic and non‐hydrostatic components is utilized. To ease the task of discretization and to enhance the accuracy of the scheme, a vertical boundary‐fitted co‐ordinate system is employed, permitting more resolution near the bottom as well as near the free surface. The issue of the implementation of boundary conditions is addressed. As recently proposed by the present authors, the Keller‐box scheme for accurate approximation of frequency wave dispersion requiring a limited vertical resolution is incorporated. The both locally and globally mass conserved solution is achieved with the aid of a projection method in the discrete sense. An efficient preconditioned Krylov subspace technique to solve the discretized Poisson equation for pressure correction with an unsymmetric matrix is treated. Some numerical experiments to show the accuracy, robustness and efficiency of the proposed method are presented. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
A new fully non‐hydrostatic model is presented by simulating three‐dimensional free surface flow on a vertical boundary‐fitted coordinate system. A projection method, known as pressure correction technique, is employed to solve the incompressible Euler equations. A new grid arrangement is proposed under a horizontal Cartesian grid framework and vertical boundary‐fitted coordinate system. The resulting model is relatively simple. Moreover, the discretized Poisson equation for pressure correction is symmetric and positive definite, and thus it can be solved effectively by the preconditioned conjugate gradient method. Several test cases of surface wave motion are used to demonstrate the capabilities and numerical stability of the model. Comparisons between numerical results and analytical or experimental data are presented. It is shown that the proposed model could accurately and effectively resolve the motion of short waves with only two layers, where wave shoaling, nonlinearity, dispersion, refraction, and diffraction phenomena occur. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents the derivation of a depth‐integrated wave propagation and runup model from a system of governing equations for two‐layer non‐hydrostatic flows. The governing equations are transformed into an equivalent, depth‐integrated system, which separately describes the flux‐dominated and dispersion‐dominated processes. The depth‐integrated system reproduces the linear dispersion relation within a 5 error for water depth parameter up to kd = 11, while allowing direct implementation of a momentum conservation scheme to model wave breaking and a moving‐waterline technique for runup calculation. A staggered finite‐difference scheme discretizes the governing equations in the horizontal dimension and the Keller box scheme reconstructs the non‐hydrostatic terms in the vertical direction. An semi‐implicit scheme integrates the depth‐integrated flow in time with the non‐hydrostatic pressure determined from a Poisson‐type equation. The model is verified with solitary wave propagation in a channel of uniform depth and validated with previous laboratory experiments for wave transformation over a submerged bar, a plane beach, and fringing reefs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
An implicit finite difference model in the σ co‐ordinate system is developed for non‐hydrostatic, two‐dimensional vertical plane free‐surface flows. To accurately simulate interaction of free‐surface flows with uneven bottoms, the unsteady Navier–Stokes equations and the free‐surface boundary condition are solved simultaneously in a regular transformed σ domain using a fully implicit method in two steps. First, the vertical velocity and pressure are expressed as functions of horizontal velocity. Second, substituting these relationship into the horizontal momentum equation provides a block tri‐diagonal matrix system with the unknown of horizontal velocity, which can be solved by a direct matrix solver without iteration. A new treatment of non‐hydrostatic pressure condition at the top‐layer cell is developed and found to be important for resolving the phase of wave propagation. Additional terms introduced by the σ co‐ordinate transformation are discretized appropriately in order to obtain accurate and stable numerical results. The developed model has been validated by several tests involving free‐surface flows with strong vertical accelerations and non‐linear waves interacting with uneven bottoms. Comparisons among numerical results, analytical solutions and experimental data show the capability of the model to simulate free‐surface flow problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
A novel approach that embeds the Boussinesq‐type like equations into an implicit non‐hydrostatic model (NHM) is developed. Instead of using an integration approach, Boussinesq‐type like equations with a reference velocity under a virtual grid system are introduced to analytically obtain an analytical form of pressure distribution at the top layer. To determine the size of vertical layers in the model, a top‐layer control technique is proposed and the reference location is employed to optimize linear wave dispersion property. The efficiency and accuracy of this NHM with Boussinesq‐type like equations (NHM‐BTE) are critically examined through four free‐surface wave examples. Overall model results show that NHM‐BTE using only two vertical layers is capable of accurately simulating highly dispersive wave motion and wave transformation over irregular bathymetry. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
An efficient curvilinear non‐hydrostatic free surface model is developed to simulate surface water waves in horizontally curved boundaries. The generalized curvilinear governing equations are solved by a fractional step method on a rectangular transformed domain. Of importance is to employ a higher order (either quadratic or cubic spline function) integral method for the top‐layer non‐hydrostatic pressure under a staggered grid framework. Model accuracy and efficiency, in terms of required vertical layers, are critically examined on a linear progressive wave case. The model is then applied to simulate waves propagating in a canal with variable widths, cnoidal wave runup around a circular cylinder, and three‐dimensional wave transformation in a circular channel. Overall the results show that the curvilinear non‐hydrostatic model using a few, e.g. 2–4, vertical layers is capable of simulating wave dispersion, diffraction, and reflection due to curved sidewalls. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, the authors treat the free‐surface waves generated by a moving disturbance with a constant speed in water of finite and constant depth. Specifically, the case when the disturbance is moving with the critical speed is investigated. The water is assumed inviscid and its motion irrotational. The surface tension is neglected. It is well‐known that the linear theory breaks down when a disturbance is moving with the critical speed. As a remedy to overcome the invalid linear theory, approximate non‐linear theories have been applied with success in the past, i.e. Boussinesq and Korteweg de Vries equations, for example. In the present paper, the authors describe a finite element method applied to the non‐linear water‐wave problems in two dimensions. The present numerical method solves the exact non‐linear formulation in the scope of potential theory without any additional assumptions on the magnitude of the disturbances. The present numerical results are compared with those obtained by other approximate non‐linear theories. Also presented are the discussions on the validity of the existing approximate theories applied to two types of the disturbances, i.e. the bottom bump and the pressure patch on the free‐surface at the critical speed. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
An accurate three‐dimensional numerical model, applicable to strongly non‐linear waves, is proposed. The model solves fully non‐linear potential flow equations with a free surface using a higher‐order three‐dimensional boundary element method (BEM) and a mixed Eulerian–Lagrangian time updating, based on second‐order explicit Taylor series expansions with adaptive time steps. The model is applicable to non‐linear wave transformations from deep to shallow water over complex bottom topography up to overturning and breaking. Arbitrary waves can be generated in the model, and reflective or absorbing boundary conditions specified on lateral boundaries. In the BEM, boundary geometry and field variables are represented by 16‐node cubic ‘sliding’ quadrilateral elements, providing local inter‐element continuity of the first and second derivatives. Accurate and efficient numerical integrations are developed for these elements. Discretized boundary conditions at intersections (corner/edges) between the free surface or the bottom and lateral boundaries are well‐posed in all cases of mixed boundary conditions. Higher‐order tangential derivatives, required for the time updating, are calculated in a local curvilinear co‐ordinate system, using 25‐node ‘sliding’ fourth‐order quadrilateral elements. Very high accuracy is achieved in the model for mass and energy conservation. No smoothing of the solution is required, but regridding to a higher resolution can be specified at any time over selected areas of the free surface. Applications are presented for the propagation of numerically exact solitary waves. Model properties of accuracy and convergence with a refined spatio‐temporal discretization are assessed by propagating such a wave over constant depth. The shoaling of solitary waves up to overturning is then calculated over a 1:15 plane slope, and results show good agreement with a two‐dimensional solution proposed earlier. Finally, three‐dimensional overturning waves are generated over a 1:15 sloping bottom having a ridge in the middle, thus focusing wave energy. The node regridding method is used to refine the discretization around the overturning wave. Convergence of the solution with grid size is also verified for this case. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
20.
The development of a numerical scheme for non‐hydrostatic free surface flows is described with the objective of improving the resolution characteristics of existing solution methods. The model uses a high‐order compact finite difference method for spatial discretization on a collocated grid and the standard, explicit, single step, four‐stage, fourth‐order Runge–Kutta method for temporal discretization. The Cartesian coordinate system was used. The model requires the solution of two Poisson equations at each time‐step and tridiagonal matrices for each derivative at each of the four stages in a time‐step. Third‐ and fourth‐order accurate boundaries for the flow variables have been developed including the top non‐hydrostatic pressure boundary. The results demonstrate that numerical dissipation which has been a problem with many similar models that are second‐order accurate is practically eliminated. A high accuracy is obtained for the flow variables including the non‐hydrostatic pressure. The accuracy of the model has been tested in numerical experiments. In all cases where analytical solutions are available, both phase errors and amplitude errors are very small. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号