首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The electrochemical behaviors of formaldehyde (FA) at boron‐doped diamond (BDD) electrodes are investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and linear scanning voltammetry (LSV) techniques. The CV results show that the oxidation reaction of FA is influenced by the hydroxyl concentration in the solution, and the peak current response with the FA concentration is linear at the range from 10 to 100 mM. The differential capacitance from EIS results indicate that the FA molecules adsorb at the BDD electrode surface at low potential (from 1.0 to 1.4 V). The kinetic studies have been examined with the various concentrations of FA, pH, and temperature. The activation energy of FA oxidation is also calculated. The results of kinetic study indicate that the adsorption of FA molecules at the BDD electrode is the rate‐determining step at low potential (from 1.0 to 1.40 V).  相似文献   

2.
Yavuz Yardım 《Electroanalysis》2011,23(10):2491-2497
In the present paper, a sensitive electroanalytical methodology for the determination of capsaicin using adsorptive stripping voltammetry (AdSV) at a boron‐doped diamond (BDD) electrode is presented. The voltammetric results indicate that in the presence of sodium dodecylsulfate (SDS) the BDD electrode remarkably enhances the oxidation of capsaicin which leads to an improvement of the peak current with a shift of the peak potential to less negative values. A linear working range of 0.05 to 6.0 µg mL?1 (0.16–20 µM) with a detection limit of 0.012 µg mL?1 (0.034 µM) has been obtained using BDD electrode by AdSV.  相似文献   

3.
《Electroanalysis》2006,18(3):253-258
The anodic voltammetric behavior of carbaryl on a boron‐doped diamond electrode in aqueous solution is reported. The results, obtained by square‐wave voltammetry at 0.1 mol L?1 Na2SO4 and pH 6.0, allow the development of a method to determine carbaryl, without any previous step of extraction, clean‐up, preconcentration or derivatization, in the range 2.5–30.0×10?6 mol L?1, with a detection limit of 8.2±0.2 μg L?1 in pure water. The analytical sensitivity of this electrochemical method diminished slightly, from 3.07 mA mmol?1 L to 2.90 mA mmol?1L, when the electrolyte was prepared with water samples collected from two polluted points in an urban creek. In these conditions, the recovery efficiencies obtained were around 104%. The effect of other pesticides (fenthion and 4‐nitrophenol) was evaluated and found to exert a negligible influence on carbaryl determination. The square‐wave voltammetric data obtained for carbaryl were typical of an irreversible electrode process with mass transport control. The combination of square‐wave voltammetry and diamond electrodes is an interesting and desirable alternative for analytical determinations.  相似文献   

4.
The electrochemical methods cyclic and square‐wave voltammetry were applied to develop an electroanalytical procedure for the determination of N‐nitrosamines (N‐nitrosopyrrolidine, N‐nitrosopiperidine and N‐nitrosodiethylamine) in aqueous solutions. Cyclic voltammetry was used to evaluate the electrochemical behaviors of N‐nitrosamines on boron‐doped diamond electrodes. It was observed an irreversible electrooxidation peak located in approximately 1.8 V (vs. Ag/AgCl) for both N‐nitrosamines. The optimal electrochemical response was obtained using the following square‐wave voltammetry parameters: f=250 Hz, Esw=50 mV and Es=2 mV using a Britton–Robinson buffer solution as electrolyte (pH 2). The detection and quantification limits determined for total N‐nitrosamines were 6.0×10?8 and 2.0×10?7 mol L?1, respectively.  相似文献   

5.
《Electroanalysis》2005,17(9):800-805
The oxidation of thiourea (TU) at boron‐doped diamond (BDD) electrodes was investigated by the use of anodic voltammetry. The results indicated that the overall TU oxidation reaction is rather complicated and takes place via two steps: a slow electron‐transfer yielding the corresponding free radical, followed by a fast oxidation of this radical, prior to its dimerization. It was found that in acidic media the voltammetric response is suitable for analytical applications, and unlike glassy carbon (GC), BDD electrodes exhibit very low susceptibility to adsorption. The same conclusion was supported by the results of AC voltammetric measurements. Based upon the voltammetric peak for the first step of TU oxidation, a method is proposed for the determination of this compound in the micromolar concentration range. The analytical performance characteristics of the method are comparable to those reported for TU determination by the use of platinum electrodes or enzyme‐modified platinum electrodes.  相似文献   

6.
The electrochemical oxidation of procaine hydrochloride (PC?HCL, 2‐diethylaminoethyl 4‐aminobenzoate hydrochloride) was investigated at as‐deposited boron‐doped diamond (ad‐BDD) electrode, anodically oxidized BDD (ao‐BDD) electrode and glassy carbon (GC) electrode using cyclic voltammetry (CV). Well‐defined cyclic voltammograms were obtained for PC?HCL oxidation with high signal‐to‐background (S/B) ratio, low tendency for adsorption, good reproducibility and long‐term stability at ad‐BDD electrode, demonstrating its superior electrochemical behavior and significant advantages in contrast to ao‐BDD and GC electrode. At 100 μM PC?HCL, the voltammetric S/B ratio was nearly one order of magnitude higher at an ad‐BDD electrode than that at a GC electrode. In a separate set of experiments for oxidation of 100 μM PC?HCL, 96%, 92% and 84% of the initial oxidation peak current was retained at the ad‐BDD, ao‐BDD and GC electrode, respectively, by stirring the solution after the tenth cycle. The current response was linearly proportional to the square root of the scan rate within the range 10–1000 mV s?1 in 10 μM PC?HCL solutions, indicating that the oxidation process was diffusion‐controlled with negligible adsorption at an ad‐BDD surface. The good linearity was observed for a concentration range from 5 to 200 μM with a linear equation of y=0.03517x+0.65346 (r=0.999), and the detection limit was 0.5 μM for oxidation of PC?HCL at the ad‐BDD electrode. The ad‐BDD electrode could maintain 100% of its original activity after intermittent use for 3 months.  相似文献   

7.
A new electroanalytical procedure was developed for the determination of lidocaine in commercial local anesthetics products containing lidocaine as the active ingredient. The procedure is based on the use of electrochemical methods as cyclic and square‐wave voltammetry, with boron‐doped diamond electrodes. The oxidation of lidocaine in Britton–Robinson buffer (0.1 mol L?1) using this type of electrode gives rise to one irreversible peak in 1.68 V (versus Ag/AgCl). The detection and quantification limits obtained from pure water were 10.0 and 34.4 μg/L, respectively. The proposed electrochemical method was also successfully applied to the analysis of commercially available pharmaceutical preparations. The electrochemical responses of pharmaceutical preparations (gels) were identical to those of standard lidocaine. No influence of propyleneglycol present in the gels on the voltammetric responses was observed. Lidocaine recoveries ranged from 97.6% to 99.2%.  相似文献   

8.
In this work, a boron‐doped diamond (BDD) electrode was used for the electroanalytical determination of indole‐3‐acetic acid (IAA) phytohormone by square‐wave voltammetry. IAA yielded a well‐defined voltammetric response at +0.93 V (vs. Ag/AgCl) in Britton–Robinson buffer, pH 2.0. The process could be used to determine IAA in the concentration range of 5.0 to 50.0 µM (n=8, r=0.997), with a detection limit of 1.22 µM. The relative standard deviation of ten measurements was 2.09 % for 20.0 µM IAA. As an example, the practical applicability of BDD electrode was tested with the measurement of IAA in some plant seeds.  相似文献   

9.
The electrochemical oxidation of promethazine hydrochloride was made on highly boron‐doped diamond electrodes. Cyclic voltammetry experiments showed that the oxidation mechanisms involved the formation of an adsorbed product that is more readily oxidized, producing a new peak with lower potential values whose intensity can be increased by applying the accumulation potential for given times. The parameters were optimized and the highest current intensities were obtained by applying +0.78 V for 30 seconds. The square‐wave adsorptive voltammetry results obtained in BR buffer showed two well‐defined peaks, dependent on the pH and on the voltammetric parameters. The best responses were obtained at pH 4.0, frequency of 50 s?1, step of 2 mV, and amplitude of 50 mV. Under these conditions, linear responses were obtained for concentrations from 5.96×10?7 to 4.76×10?6 mol L?1, and calculated detection limits of 2.66×10?8 mol L?1 (8.51 μg L?1) for peak 1 and of 4.61×10?8 mol L?1 (14.77 μg L?1) for peak 2. The precision and accuracy were evaluated by repeatability and reproducibility experiments, which yielded values of less than 5.00% for both voltammetric peaks. The applicability of this procedure was tested on commercial formulations of promethazine hydrochloride by observing the stability, specificity, recovery and precision of the procedure in complex samples. All results obtained were compared to recommended procedure by British Pharmacopeia. The voltammetric results indicate that the proposed procedure is stable and sensitive, with good reproducibility even when the accumulation steps involve short times. It is therefore very suitable for the development of the electroanalytical procedure, providing adequate sensitivity and a reliable method.  相似文献   

10.
《Electroanalysis》2003,15(4):249-253
Cyclic voltammetric measurements were made using well‐characterized microcrystalline boron‐doped diamond thin‐film electrodes to test the material's responsiveness for ferrocene as a function of scan rate, solvent, and electrolyte composition. Apparent heterogeneous electron transfer rate constants, k°app, of 0.042±0.015, 0.048±0.015, and 0.008±0.002 cm/s were observed in 0.1 M NaClO4/CH3CN, 0.1 M TBAClO4/CH3CN, and 0.1M TBAClO4/CH2Cl2, respectively. These rate constants, obtained using electrodes without any type of pretreatment, are similar to those observed for freshly polished glassy carbon. The results demonstrate that boron‐doped diamond is a viable material for the electrochemical analysis of nonaqueous analytes.  相似文献   

11.
A new boron doped diamond microcells (BDD) was modified, for rapid, selective and highly sensitive determination of nitrite, using a coating film of polyoxometalates (POMs), formed by cyclic voltammetry on the molecular p‐phenylenediamine (PPD) functionalized BDD. The scanning electron microscopy (SEM) technique was used to examine the morphology of (PPD/SiW11) modified (BDD) electrode. It was found that (SiW11) layer was uniformly formed on the electrode surface. It was observed that (BDD/PPD/SiW11) showed excellent electrocatalytic activities towards nitrite ion. Under the selected conditions, the anodic peak maximum at ?0.6 V was linear versus nitrite concentration in the 40 µM–4 mM range, and the detection limit obtained was 20 µM. The newly developed electrode has been successfully applied to the determination of nitrite content in real river water samples.  相似文献   

12.
The electrochemical behaviour of methyl viologen and anthraquinonedisulfonate was studied at electrodes produced from differing forms of diamond, including microcrystalline boron doped diamond, boron doped diamond powder and detonation nanodiamond powder. Two types of electrode pretreatment were employed to produce two dissimilar surface terminations: hydrophobic H‐terminated and hydrophilic O‐terminated. In the case of methyl viologen, it was found that the reduced neutral molecule adsorbed on all three electrodes if they were hydrogen terminated, but not if they were oxygen terminated. For anthraquinonedisulfonate, no adsorption was found on the solid diamond electrode, although again significant adsorption was noted on the powder electrodes, provided they were hydrogen terminated. The reasons underlying these observations are discussed in terms of hydrophobic and electrostatic interactions and the electrode morphology. The work provides information into the likely occurrence of adsorption and concomitant electrode fouling, which may be experienced in electroanalytical applications using solid and powdered forms of diamond.  相似文献   

13.
The present work describes the first electrochemical method for quantifying paraquat herbicide poisoning in human saliva samples. Paraquat shows two couples of well‐defined peaks in aqueous solution using a boron doped diamond (BDD) electrode. By using square wave voltammetry (SWV) technique under optimum experimental conditions, a linear analytical curve was obtained for paraquat concentrations ranging from 0.800 to 167 µmol L?1, with a detection limit of 70 nmol L?1. This method was applied to quantify paraquat spikes in human saliva samples and in two different water samples (tap and river). The recovery values obtained ranged from 83.0 to 104 % and 99.1 to 105 %, respectively, which highlight the accuracy of the proposed method.  相似文献   

14.
The highly boron‐doped diamond electrode (HBDD) combined with square wave voltammetry (SWV) was used in the development of an analytical procedure for diquat determination in potato and sugar cane samples and lemon, orange, tangerine and pineapple juices. Preliminary experiments realised in a medium of 0.05 mol L?1 Na2B4O7 showed the presence of two voltammetric peaks around ?0.6 V and around ?1.0 V vs. Ag/AgCl/Cl? 3.0 mol L?1, where the first peak could be successfully used for analytical proposes due the facility in the electrode surface renovation. After the experimental and voltammetric optimisation, the calculated detection and quantification limits were 1.6×10?10 mol L?1 and 5.3×10?10 mol L?1 (0.057 µg L?1 and 0.192 µg L?1, respectively), which are lower than the maximum residue limit established for fresh food samples by the Brazilian Sanitary Vigilance Agency. The proposed methodology was used to determine diquat residues in potato and sugar cane samples and lemon, orange, tangerine and pineapple juices and the calculated recovery efficiencies indicated that the proposed procedure presents higher robustness, stability and sensitivity, good reproducibility, and is very adequate for diquat determination in complex samples.  相似文献   

15.
Allyltriethylammonium bromide (ATAB) was covalently attached to the surface of hydrogen‐terminated boron‐doped diamond (BDD) thin films using a photochemical method to fabricate positively charged electrode surfaces. The anodic current for oxalate oxidation both in cyclic voltammetry and in flow‐injection analysis with amperometry was found to be up to two times larger at ATAB‐modified BDD (ATAB‐BDD) than at an unmodified BDD electrode, which may be based on the electrostatic interaction between the oxalate anion and the electrode surface. In addition, the stability of the electrochemical detection of oxalate was improved at the ATAB‐BDD electrode compared to the unmodified electrode.  相似文献   

16.
The electrochemical detection of the hazardous pollutant 4‐nitrophenol (4‐NP) at low potentials, in order to avoid matrix interferences, is an important research challenge. This study describes the development, electrochemical characterization and utilization of a multiwall carbon nanotube (MWCNT) film electrode for the quantitative determination of 4‐NP in natural water. Electrochemical impedance spectroscopy measurements showed that the modified surface exhibits a decrease of ca. 13 times in the charge transfer resistance when compared with a bare glassy carbon (GC) surface. Voltammetric experiments showed the possibility to oxidize a hydroxylamine layer (produced by the electrochemical reduction of 4‐NP on the GC/MWNCT surface) in a potential region which is approximately 700 mV less positive than that needed to oxidize 4‐NP, thus minimizing the interference of matrix components. The limit of detection for 4‐NP obtained using square‐wave voltammetry (0.12 μmol L?1) was lower than the value advised by EPA. A natural water sample from a dam located in São Carlos (Brazil) was spiked with 4‐NP and analyzed by the standard addition method using the GC/MWCNT electrode, without any further purification step. The recovery procedure yielded a value of 96.5% for such sample, thus confirming the suitability of the developed method to determine 4‐NP in natural water samples. The electrochemical determination was compared with that obtained by HPLC with UV‐vis detection.  相似文献   

17.
The voltammetric behavior of 3‐nitrofluoranthene and 3‐aminofluoranthene was investigated in mixed methanol‐water solutions by differential pulse voltammetry (DPV) at boron doped diamond thin‐film electrode (BDDE). Optimum conditions have been found for determination of 3‐nitrofluoranthene in the concentration range of 2×10?8–1×10?6 mol L?1, and for determination 3‐aminofluorathnene in the concentration range of 2×10?7–1×10?5 mol L?1, respectively. Limits of determination were 3×10?8 mol L?1 (3‐nitrofluoranthene) and 2×10?7 mol L?1 (3‐aminofluoranthene).  相似文献   

18.
A boron‐doped diamond electrode (BDDE) was used for the simultaneous anodic determination of L ‐ascorbic acid (AA) and acetaminophen (AC) in aqueous buffered media by differential pulse voltammetry (DPV). Linear calibration plots of anodic current peaks versus concentration were obtained for both analytes in the concentration range 0.01–0.1 mM with very high correlation coefficients. RSD of 2–3% and high sensitivities were obtained from DPV data in single and dicomponent systems. The potential applicability of the DPV technique associated with standard addition was illustrated by simultaneous determination of AA and AC in real sample solutions made up from pharmaceutical products.  相似文献   

19.
《Electroanalysis》2003,15(12):1011-1016
The electrodeposition of lead on boron‐doped diamond has been studied with a view to identifying the fundamental parameters controlling the sensitivity and lower detection limit in anodic stripping voltammetry. Chronoamperometric transients are used to explore the deposition, indicating a progressive growth mechanism confirmed by ex situ AFM images. Linear sweep ASV experiments show a threshold concentration of ca 10?6 M below which no lead is detected; this is attributed to the need for nucleation of the solid phase on the electrode. Experiments with variable temperature show that this threshold can be usefully lowered at elevated temperatures.  相似文献   

20.
《Analytical letters》2012,45(10):1697-1711
This paper examines the electrochemical oxidation of terbinafine with the boron doped diamond and glassy carbon electrodes. The studies were performed by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and square-wave voltammetry (SWV). The supporting electrolytes, solution pH, the range of potentials, and the scan rates were optimized. Terbinafine was irreversibly oxidized in all electrolytes, yielding well-defined peaks in the positive potential range. The peak potential shifted towards less positive values as the solution pH increased. Voltammetric determination of terbinafine was performed under the optimized conditions. Using the boron doped diamond electrode, a linear relationship between current and concentration was obtained between 5.44 × 10?7 and 5.18 and 10?6 mol/L with SWV and between 7.75 · 10?7 and 8.55 · 10?6 mol/L by DPV. At the glassy carbon electrode, a linear relationship between 7.75 · 10?7 and 8.55 · 10?6 mol/L was obtained by SWV and between 7.75 · 10?7 and 1.05 · 10?5 mol/L by DPV. The sensitivity, precision, and selectivity of the procedures were evaluated. In order to check the practical application of the developed methods, the concentration of terbinafine was determined in pharmaceutical preparations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号