首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The voltammetric behavior of paraquat was investigated at hydroxyapatite‐modified carbon paste electrode HAP‐CPE in K2SO4. A method was developed for the detection of the trace of this herbicide, based on their redox reaction. The reduction peaks of paraquat were observed around ?0.70 V and ?1.00 V (vs. SCE) in square‐wave voltammetry. Experimental conditions were optimized by varying the accumulation time, apatite loading and measuring solution pH. Calibration plots were linear under the optimized parameters over the herbicide's concentration range 8–200×10?7 mol L?1, with a detection and quantification limits about 1.5×10?8 mol L?1 and 6.4 10?8 mol L?1, respectively.  相似文献   

2.
《Electroanalysis》2003,15(12):1054-1059
Epinephrine (EP) could exhibit an anodic peak at a bare gold electrode, but it was very insensitive. However, when the bare gold electrode was modified with 3‐mercaptopropionic acid (3MPA) self‐assembled monolayer (3MPA SAM), the peaks of EP became more reversible and sensitive due to the accumulation and mediate efficiency of 3MPA SAM. Conditions such as solution pH, concentration of supporting electrolyte and accumulation time were optimized. Under the selected conditions (i.e., 0.02 M pH 6.8 sodium phosphate buffer, accumulation time: 2 min under open‐ circuit.), the height of the anodic peak at about 0.18 V (vs. SCE) was linear to EP concentration in the range of 2×10?7 ?1×10?6 M and 1×10?6?5×10?4 M with correlation coefficient of 0.995 and 0.999, respectively. When the 3MPA/Au was further modified with cysteamine, the interference of H2O2 and BrO3? was eliminated. But the resulting electrode still suffered from the interference of ascorbic acid. This method was used to determine the content of EP in adrenaline hydrochloride injections, and the recovery was in the range of 97.0% to 105.1%.  相似文献   

3.
The electrochemical polymerization of glycine on carbon ionic liquid electrode (CILE) was described. The presence of ionic liquid on the surface of CILE facilitated the electropolymerization of glycine. The polyglycine modified CILE provided a valid and simple approach to selectively detect dopamine in the presence of AA in physiological environment. The proposed sensor not only decreased the voltammetric responses of AA but also dramatically enhanced the oxidation peak current of DA compared to bare CILE. Using square wave voltammetry, the modified CILE showed good electrochemical behavior to DA, a linear range of 1.0×10?7–3.0×10?4 M in the presence of 1 mM ascorbic acid (AA) and a detection limit of 5.0×10?9 M was estimated (S/N=3).  相似文献   

4.
An electroanalytical method for the simultaneous determination of paracetamol (PAR), caffeine (CAF), and orphenadrine (ORPH) using the square‐wave voltammetry (SWV) and a cathodically pretreated boron‐doped diamond electrode was developed. The method exhibits linear responses to PAR, CAF, and ORPH in the concentration ranges 5.4×10?7–6.1×10?5 M, 7.8×10?7–3.5×10?5 M, and 7.8×10?7–3.5×10?5 M, respectively, with detection limits of 2.3×10?7 M, 9.6×10?8 M, and 8.4×10?8 M, respectively. The proposed method was successfully applied in the simultaneous determination of these analytes in pharmaceutical formulations.  相似文献   

5.
《Electroanalysis》2006,18(10):1028-1034
This paper presents a comparative study on the electrochemical behavior of the flavonoid rutin on a rigid carbon‐polyurethane composite electrode and on a glassy carbon electrode. The electrochemical oxidation reaction of rutin was found to be quasireversible and affected by adsorption on the electrode surface. A square‐wave voltammetric method was developed for determination of rutin in green tea infusion samples using the RCPE electrode and data treatment by a deconvolution procedure. The detection limit achieved in buffered solutions was 7.1×10?9 mol L?1 using the RCPE and 1.7×10?8 mol L?1 using the GC electrode the average reproducibility for five determinations being 3.5%.  相似文献   

6.
The formation of an inclusion complex between 4‐aminobiphenyl (4‐AB) and β‐cyclodextrin molecules (β‐CD), allows the use of thiolated β‐CDs as chemi‐adsorbed material on a Au electrode as a self‐assembled submonolayer for the selective square wave voltammetric determination of 4‐AB. The submonolayer was characterized by reductive desorption and an association constant of 1.2×104 L/mol was obtained. The optimization of variables yielded a linear dependence of ip/4‐AB concentration in the range of 10?5 to 10?4 mol/L. The selectivity of the method was evaluated in the presence of other aromatic amines obtaining better results with the modified electrode. This methodology was applied to the voltammetric determination of 4‐AB in wastewater samples.  相似文献   

7.
A glassy carbon electrode modified with per‐6‐amino‐β‐cyclodextrin (β‐CDNH2) and functionalized single‐walled carbon nanotubes (SWCNT‐COOH) was elaborated. This structure was investigated for the detection of dopamine acid (DA) in presence of ascorbic acid (AA). The sensor behavior was studied by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy. The analysis results show that the electrode modification with CD derivative improves the sensitivity and selectivity of the DA recognition; the electrochemical response was further improved by introduction of SWCNT‐COOH. The sensor shows good and reversible linear response toward DA within the concentration range of 7×10?7–10?4 M with a detection limit of 5×10?7 M.  相似文献   

8.
Electrochemical behavior of remarkably low levels of Ribonucleic acid yeast (yRNA) is studied through differential pulse voltammetry (DPV), and kinetic parameters of the electrochemical reaction have also been calculated through square‐wave voltammetry (SWV), based on immobilization of yRNA on the surface of a CPB‐cellulose modified electrode. YRNA/ CPB‐cellulose/ITO conductive glass electrode is demonstrated by Infrared reflect (IR) and electrochemical impedance spectroscopy (EIS). The oxidation peak potential of yRNA shifts negatively with increasing pH. The peak currents decrease gradually in successive scans and no corresponding reduction peaks occur, indicating that oxidation process of yRNA is completely irreversible. Variables influencing DPV response of yRNA, such as pH, pulse amplitude and electrolyte concentration, are explored and optimized. Peak currents are proportional to the concentration of yRNA in the range of 0.1 μg mL?1–1.0 μg mL?1, and the linear regression coefficient equals 0.9923. The detection limit for yRNA is 1.0×10?10 g mL?1. Interferences of L ‐cysteine, L ‐alanine, Hemoglobin, Uridine 5′‐monophosphate, Guanosine 5′‐monophosphate, Adenosine 5′‐triphosphate and some metal ions (Co3+, Cr3+, Ni2+, Hg2+, Zn2+, etc) are negligible. The methods adopted here are more sensitive and selective than currently applied techniques and overcome the drawback of absorption spectroscopy arising from a strong interference due to other UV‐absorbing substances.  相似文献   

9.
《Electroanalysis》2002,14(23):1615-1620
Electrochemically modified glassy carbon electrode (GCE) was used to study the electrochemical oxidation and detection of denatured single‐stranded (ss) DNA by means of adsorptive stripping voltammetry. The modification of GCE, by electrochemical oxidation at +1.75 V (vs.SCE) for 10 min and cyclic sweep between +0.3 V and ?1.3 V for 20 cycles in pH 5.0 phosphate buffer, results in 100‐fold improvement in sensitivity for ssDNA detection. We speculated that the modified GCE has a high affinity to single‐stranded DNA through hydrogen bond (specific static adsorption). Single‐stranded DNA can accumulate at the GCE surface at open circuit and produce a well‐defined oxidation peak corresponding to the guanine residues at about +0.80 V in pH 5.0 phosphate buffer, while the native DNA gives no signal under the same condition. The peak currents are proportional to the ssDNA concentration in the range of 0–18.0 μg mL?1. The detection limit of denatured ssDNA is ca. 0.2 μg mL?1 when the accumulation time is 8 min at open circuit. The accumulation mechanism of ssDNA on the modified GCE was discussed.  相似文献   

10.
An organically modified sol‐gel electrode using 3‐aminopropyltrimethoxy silane for covalent immobilization of a redox mediator namely toluidine blue has been reported. Cyclic voltammetric characterization of the modified electrode in the potential range of 0.2 V to ?0.6 V exhibited stable voltammetric behavior in aqueous supporting electrolyte with a formal potential of ?0.265 V vs. SCE, corresponding to immobilized toluidine blue. The electrocatalytic activity of the modified electrode when tested towards nitrite ion exhibited a favorable response with the electrocatalytic reduction of nitrite occurring at a reduced potential of ?0.34 V. A good linear working range from 2.94×10?6 M to 2.11×10?3 M with a detection limit of 1.76×10?6 M and quantification limit of 5.87×10?6 M was obtained for nitrite determination. The stable and quick response (4 s) of the modified electrode towards nitrite under hydrodynamic conditions shows the feasibility of using the present sensor in flow systems. Significant improvements in the operational stability by overcoming the leachability problem and repeatability with a relative standard deviation of 1.8% of the TB thin film sensor have been obtained by the strategy of immobilization of the mediator in the sol‐gel matrix.  相似文献   

11.
We report the electrochemical behavior of a 4‐nitroimidazole derivative, 1‐methyl‐4‐nitro‐2‐hydroxymethylimidazole (4‐NImMeOH), on glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes (MWCNT). As dispersing agents, dimethylformamide (DMF) and water were used. The electrochemical response of the resulting electrodes was evaluated using linear sweep, cyclic and square‐wave voltammetry (LSV, CV and SWV). Several parameters such as medium pH, nature and concentration of the CNTs dispersion and accumulation time were tested. The optimal conditions determined for obtain better response were: pH 2, dispersion concentration=4 mg/mL of CNT in water, accumulation time=7 min. The MWCNT‐modified GCE exhibited attractive electrochemical properties producing enhanced currents with a significant reduction in the overpotential and good signal‐to‐noise characteristics, in comparison with the bare GCE. The modified electrode is highly repeatable for consecutive measurements, reaching a variation coefficient of 2.9% for ten consecutive runs.  相似文献   

12.
聚L-谷氨酸修饰电极的制备及对多巴胺的测定   总被引:6,自引:0,他引:6  
用循环伏安法制备了聚L-谷氨酸修饰玻碳电极,研究了多巴胺在聚L-谷氨酸修饰电极上的电化学行为,建立了测定多巴胺的新方法。在pH 7.5的磷酸盐缓冲溶液中,用循环伏安法测定多巴胺的线性范围为1.0×10-4~4.0×10-8mol.L-1,检出限为5.0×10-9mol.L-1。该法用于药剂中多巴胺的测定,结果满意。  相似文献   

13.
《Electroanalysis》2003,15(8):689-694
The reaction of chlorine and N,N‐diethyl‐p‐phenylenediamine has been studied as a means of generating an analytical voltammetric signal of much improved sensitivity and selectivity for the detection of the former than is possible via direct electrolysis. A reaction mechanism is suggested whereby the chlorine attacks the primary amine of DEPD to form the N‐chlorinated product that shows a much enhanced signal under conditions of square‐wave voltammetry than does chlorine itself. The analytical parameters were found to vary with concentration of DEPD and a linear range from 17 to 495 μM was achievable with a corresponding limit of detection of 6.8 μM  相似文献   

14.
Electrochemical oxidation of (?)‐epigallocatechin gallate (EGCG), the main monomer flavanol found in green tea, has been investigated over a wide pH range at a glassy‐carbon electrode using square‐wave voltammetry (SWV). Square‐wave voltammograms of (?)‐epigallocatechin (EGC) and gallic acid have been studied as well. The I–E profile of EGCG, i.e. the oxidation potentials and the current responses of the first and the second peak, is pH dependent. The oxidation of EGCG is a quasireversible process over the studied pH range, which was also confirmed by the non‐linear relationship between the peak currents and squre root of frequency. The best SWV responses for EGCG were obtained at pH 2.0, frequency of 100 Hz, step of 2 mV and amplitude of 50 mV. Under these conditions, linear responses for EGCG were obtained for concentrations from 1×10?7 M to 1×10?6 M, and calculated LOD and LOQ for the first oxidation peak were 6.59×10?8 M and 2.19×10?7 M, respectively. The proposed electroanalytical procedure was applied for the determination of EGCG content in green tea. Developed SWV methodology represents a potential analytical tool in determination of catechins in tea samples.  相似文献   

15.
《Electroanalysis》2004,16(21):1745-1754
This works reports the use of adsorptive stripping voltammetry (AdSV) for the trace determination of chromium on a rotating‐disk bismuth‐film electrode (BFE). During the reductive accumulation step, all the chromium species in the sample were reduced to Cr(III) which was complexed with cupferron and the complex was accumulated by adsorption on the surface of a preplated BFE. The stripping step was carried out by using a square‐wave (SW) potential‐time voltammetric signal. Electrochemical cleaning of the bismuth film was employed, enabling the same bismuth film to be used for a series of measurements in the presence of dissolved oxygen. The experimental variables as well as potential interferences were investigated and the figures of merit of the method were established. Using the selected conditions, the 3σ limit of detection for chromium was 100 ng L?1 (for 120 s of preconcentration) and the relative standard deviation was 3.6% at the 2 μg L?1 level (n=8). Finally, the method was applied to the determination of chromium in real samples with satisfactory results.  相似文献   

16.
The voltammetric behavior of 3‐nitrofluoranthene and 3‐aminofluoranthene was investigated in mixed methanol‐water solutions by differential pulse voltammetry (DPV) at boron doped diamond thin‐film electrode (BDDE). Optimum conditions have been found for determination of 3‐nitrofluoranthene in the concentration range of 2×10?8–1×10?6 mol L?1, and for determination 3‐aminofluorathnene in the concentration range of 2×10?7–1×10?5 mol L?1, respectively. Limits of determination were 3×10?8 mol L?1 (3‐nitrofluoranthene) and 2×10?7 mol L?1 (3‐aminofluoranthene).  相似文献   

17.
《Electroanalysis》2004,16(8):661-666
The behavior of Mifepristone (RU‐486) was studied by square‐wave technique, leading to two methods for its determination in aqueous samples and urine samples at pH 2. The application of the square‐wave (SW) without the adsorptive accumulation and stripping voltammetric (AdSV) show the maximum response at ?0.896 V using an accumulation potential of ?0.5 V. The effect of experimental parameters that affect this determination are discussed. For the stripping technique, Mifepristone proved to be more sensitive, yielding signals four times larger than those obtained by applying a square‐wave scan without the previous accumulation. The calibration plot to determine Mifepristone was linear in the range 2.4×10?8 and 5.4×10?7 M by stripping mode with an accumulation time tacc of 30 s. The relative standard deviation obtained for concentration levels of Mifepristone as low as 2.0×10?7 M with square‐wave was 1.17% (n=10) and with stripping square‐wave 2.02% (n=10) in the same day. The two proposed methods (SW and SWAdSV) were applied to the determination of Mifepristone in urine.  相似文献   

18.
In this paper 1‐(2‐pyridylazo)‐2‐naphthol (PAN) and ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) were mixed with graphite powder to get a modified carbon paste electrode (PAN‐IL‐CPE), which was further used for the sensitive determination of bismuth(III). By the co‐contribution of the formation of PAN‐Bi complex and the accumulation effect of IL, more bismuth(III) was electrodeposited on the surface of the PAN‐IL‐CPE. Then the reduced Bi was oxidized and detected by differential pulse anodic stripping voltammetry (DPASV) with the oxidation peak appeared at 0.17 V (vs. SCE). Under the optimal conditions the oxidation peak current was proportional to the bismuth(III) concentration in the range from 0.04 to 7.5 μmol L?1 with the detection limit as 3.9 nmol L?1. The proposed method was successfully applied to the stomach medicine sample detection with good recovery.  相似文献   

19.
《Electroanalysis》2004,16(6):450-457
The theory of adsorptive stripping square‐wave voltammetry (SWV) for relatively low ligand concentrations is employed to determine the reduction mechanism of Cd(II)‐ferron complexes accumulated on a static mercury drop electrode at different pH values. The electrochemical behavior of ferron molecules indicated that the adsorptive concentration of Cd(II) is possible in solutions with 3.5<pH<11, providing a wide pH range where the interference of other ligands present in real samples would be not so critical. Cyclic voltammetry experiments were also performed for the purpose of comparison. Fitting between experimental and theoretical square‐wave voltammograms shows that the prevailing species at the reaction layer coincide with the equilibrium bulk distribution. The simulation procedure indicated that the electrochemical rate constants of Cd(II)‐ferron complexes varied from (6±1) s?1 to (0.17±0.01) s?1 for solutions analyzed at pH 3.9 and 10.8, respectively. Changes at the surface concentrations are discussed considering the ligand to complex ratios at the electrode surface and at the solution bulk. From this analysis it is possible to infer that the oxidized metal species are produced in the electrolytic solution instead of on the electrode surface.  相似文献   

20.
In this work, a boron‐doped diamond (BDD) electrode was used for the electroanalytical determination of indole‐3‐acetic acid (IAA) phytohormone by square‐wave voltammetry. IAA yielded a well‐defined voltammetric response at +0.93 V (vs. Ag/AgCl) in Britton–Robinson buffer, pH 2.0. The process could be used to determine IAA in the concentration range of 5.0 to 50.0 µM (n=8, r=0.997), with a detection limit of 1.22 µM. The relative standard deviation of ten measurements was 2.09 % for 20.0 µM IAA. As an example, the practical applicability of BDD electrode was tested with the measurement of IAA in some plant seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号