首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An amperometric method for the determination of iodide ions has been developed using disposable, screen‐printed electrodes. The used sensors have a gold, graphite and platinum working electrodes with an area of about 7 mm2. Calibration curves exhibit a linear relationship between the electrode response and the iodide concentration up to 3.00 mM. The correlation coefficients for all calibration curves varied from 0.988 to 0.998. The relative standard deviations were equal to or less than 5.26 % (n=5). The lowest iodide concentration measured was 100 µM.  相似文献   

2.
A sensitive electroanalytical methodology for the determination of uric acid in real samples using adsorptive voltammetry at a multiwalled carbon nanotubes (MWCNT) modified screen printed electrode (SPCE) is presented. Adsorption of uric acid takes place at open circuit potential at an optimized pH 5.0. Studies about the effect of accumulation time and scan rate on the analytical signal were developed and confirm the adsorption nature of the electrodic process. Quantitative analysis of uric acid by using its oxidation process at +0.18 V (vs. an Ag pseudoreference electrode) was carried out with an accumulation time of 5 min. Thus, a linear voltammetric based reproducible determination of uric acid (RSD 5 %) in the range 1–100 µM was obtained. The method was then successfully used for the determination of uric acid in real clinical samples of urine without detection of interferences. The proposed methodology only requires a dilution of the real sample and present advantages as low cost and easy handling for non specialized technicians.  相似文献   

3.
Gold nanostructured screen‐printed carbon electrodes are demonstrated to be suitable transducers for the determination of lead using square‐wave voltammetry. Reproducible gold nanostructures have been obtained by direct electrochemical deposition. A calibration plot from 2.5 to 250 μg/L was obtained in acidic solutions of Pb(II) with a reproducibility of 4% (n=10). The detection limit was 0.09 μg/L of lead. The method is then applied to perform a blood lead analysis by adjusting square‐wave parameters in capillary or venous blood with a minimum sample pretreatment and excellent accuracy and reproducibility.  相似文献   

4.
The electrochemical oxidation of pyrogallol at electrogenerated poly(3,4‐ethylenedioxythiophene) (PEDOT) film‐modified screen‐printed carbon electrodes (SPCE) was investigated. The voltammetric peak for the oxidation of pyrogallol in a pH 7 buffer solution at the modified electrode occurred at 0.13 V, much lower than the bare SPCE and preanodized SPCE. The experimental parameters, including electropolymerization conditions, solution pH values and applied potentials were optimized to improve the voltammetric responses. A linear calibration plot, based on flow‐injection amperometry, was obtained for 1–1000 µM pyrogallol, and a slope of 0.030 µA/µM was obtained. The detection limit (S/N=3) was 0.63 µM.  相似文献   

5.
Acrylamide (AA) was electrochemically detected and quantified by means of its voltammetric response on carboxylic modified Single‐Walled Carbon Nanotube Screen Printed Electrodes (COOH‐SWCNT‐SPEs). The electroreduction signal of AA was proportional to AA concentration at low values (below 300 µM) and the observed sensitivity was explained in terms of AA adsorption on the COOH‐SWCNT‐SPEs that was demonstrated using the electrochemical response of [Fe(CN)6]3? and [Fe(CN)6]4? and Raman spectroscopy experiments. In order to test the suggested analytic approach (LOD of 0.03 µM, LOQ of 0.04 µM), detection and quantification of AA in fried potatoes was carried out using the proposed electrochemical method and HPLC. Both techniques showed similar contents of AA.  相似文献   

6.
Compared with paraffin oil, the use of ionic liquids as a binder in carbon paste type electrodes was shown to greatly enhance the accumulation of analytes, as illustrated with 17α‐ethynylestradiol as a model. The ionic “liquid” n‐octyl‐pyridinium hexafluorophosphate [C8py][PF6] was most efficient among several ionic liquids investigated. Such preconcentration allowed a [C8py][PF6]‐multiwalled carbon nanotubes (MWCNTs) (95 : 5 w/w) composite electrode to be useful for adsorptive stripping voltammetry. Screen‐printed electrodes modified with [C8py][PF6]‐MWCNTs were developed and were able to achieve high sensitivity during adsorptive stripping voltammetric measurements under optimised conditions.  相似文献   

7.
In this study, we report a simple, low‐cost and rapid electrochemical sensor based on the anodically pretreated screen‐printed carbon electrodes (SPCE*) for the determination of pyrogallol in pH 7.0 buffer solutions. Cyclic voltammetric studies show that SPCE* lowers overpotentials and improve electrochemical behaviour of pyrogallol, compared to untreated SPCE. All experimental parameters were optimized to improve voltammetric responses; excellent analytical features were achieved by flow‐injection amperometric methods. A linear calibration plot was obtained for 10‐1000 μM pyrogallol with a slope of 0.0562 μA/μM. The detection limit (S/N = 3) was 0.33 μM. Interferences from some inorganic salts and organic compounds were studied. The assay was applied to the determination of pyrogallol in tap water and lake water, respectively.  相似文献   

8.
We report here a facile method to immobilize zirconia nanoparticles on a disposable screen‐printed carbon electrode (designated as ZrO2‐SPCE) for phosphate sensor application. Simply by ultrasonicating a bare SPCE in a ZrO2 slurry, ZrO2 nanoparticles can be immobilized effectively on the electrode surface as verified by surface characterization evidences. Using ferricyanide as a redox probe, an increase in the charge transfer resistance (Rct) of ferricyanide upon adsorption of phosphate on ZrO2 is used for the determination of phosphate. This ZrO2‐SPCE phosphate sensor shows a wide linear range up to 1 mM and a detection limit of 1.69 µM (S/N=3). Practical applicability of the ZrO2‐SPCE is demonstrated by detecting phosphate content in human blood samples.  相似文献   

9.
《Electroanalysis》2017,29(5):1388-1399
A molecularly imprinted polymer (MIP) was rationally synthesized with the aid of computer based studies. The computational studies were used to screen for the most suitable template to functional monomer molar ratio. Two functional monomers were involved in the study (methacrylic acid and 4‐vinylpyridine). Four MIP ratios were synthesized in accordance with the results of the computational studies and their performance was evaluated using equilibrium rebinding assays. The MIP with the best performance was used as an additive in carbon paste electrodes for the voltammetric determination of valaciclovir (VCV). Following the optimization of voltammetric parameters, a linear response was obtained in the range of 1.0x10−6–7.0x10−4 M with a limit of detection at 4.45x10−7 M. The MIP modified carbon paste electrode was successfully applied for the determination of VCV in pure solutions and dosage form.  相似文献   

10.
In this work, a new method to quantify nitrofurantoin in aqueous media using a flow injection system connected to commercially available screen‐printed carbon nanofibers was developed. A pretreatment of the screen‐printed carbon nanofibers electrode with Britton? Robinson buffer/N,N‐dimethylformamide was applied to enhance the nitrofurantoin peak current signal in one step. The developed method was demonstrated to be sensible, reproducible, easy, and inexpensive. With a low detection limit, it is applicable to real samples. The results indicate that it is highly applicable for the detection of nitrofurantoin in several matrices. When urine samples without any pretreatment were analyzed, the method proved reproducible and sensible and had a low detection limit. The use of screen‐printed electrodes has advantages over other modified electrodes as a glassy carbon due to its versatility.  相似文献   

11.
Commercially available carbon‐based screen‐printed electrodes were studied by cyclic voltammetry and electrochemical impedance spectroscopy in their behavior towards electron transfer to the soluble fast redox probes hexacyanoferrate(III), hexaammineruthenium(III) and methyl‐viologen. Semi‐infinite linear diffusion was observed for hexacyanoferrate(III) probe, with heterogeneous electron transfer rate constants significantly favored on nanotubes‐modified surfaces. Finite diffusion was observed for methyl‐viologen on graphene electrodes, which was reflected in the enhancement of the faradic currents by 4‐folds. Hexaammineruthenium(III) showed mixed diffusion behavior. These characteristics are reflected in the voltammetric behavior of lead(II) and cadmium(II) stripping from in‐situ deposited bismuth layer.  相似文献   

12.
《Electroanalysis》2006,18(15):1457-1462
This work describes an electroanalytical method for determining gold(I) thiomalate, aurothiomalate, widely used for treatment of reumatoid arthiritis, using a screen‐printed carbon electrode (SPCE). Aurothiomalate (AuTM) was determined indirectly at the same electrode by accumulating it first at ?1.5 V vs. printed carbon. At this potential in the adsorbed state, the AuTM is reduced to Au(0), which is then oxidized at two steps at ?0.22 V and +0.54 V on SPCE. Using optimized conditions of 60 s deposition time, ?1.5 V (vs. printed carbon) accumulation potential, 100 mV s?1 scan rate, linear calibration graphs can be obtained by monitoring the peak at +0.54 V for AuTM in HCl 0.1 mol L?1 from 1.43×10?6 to 1.55×10?4 mol L?1. A limit of detection obtained was 6.50×10?7 mol L?1, and the relative standard deviation from five measurements of 3.0×10?5 mol L?1 AuTM is 4.5%. The method was successfully applied for AuTM determination in human urine sample.  相似文献   

13.
We report here a novel carbon paste electrode (CPE) which is able to quantitatively sense tramadol under physiological conditions without sample preparation step. The selectivity of CPE is modified by applying molecularly imprinted polymer (MIP) technology. Multiwalled carbon nanotubes (MWCNTs) are incorporated in the structure of CPE to improve the conductivity and the ion‐to‐electron transduction. The electrode shows a wide dynamic linear range for tramadol from 10?7 to 10?3 M. The observed limit of detection and % RSD are 5×10?7 M and 1.8 %, respectively. Finally, the proposed method is applied to determine tramadol in urine and medicinal tablets.  相似文献   

14.
This work reports the determination of 5 neonicotinoid pesticides (Clothianidin, Imidacloprid, Thiamethoxam, Nitenpyram and Dinotefuran) in water samples by cathodic differential pulse (DP) voltammetry at screen‐printed disposable sensors featuring a sputtered bismuth thick‐film working electrode, a Ag reference electrode and a carbon counter electrode. The performance of the bismuth thick‐film electrodes was compared to that of a home‐made bismuth thin‐film electrode and a bismuth‐bulk electrode. The electrodes were further characterized by electrochemical and optical techniques. The effect of the pH of the supporting electrolyte on the DP reduction currents of the 5 pesticides was studied. The limits of quantification (LOQs) in 4 water matrices (distilled water, tap water, mineral water and surface water) were in the range 0.76 to 2.10 mg L?1 but severe matrix effects were observed in the analysis of mineral and, especially, surface water samples. Using a solid‐phase extraction (SPE) procedure using Lichrolut EN cartridges and elution with methanol, the matrix effects were substantially reduced and the LOQs were in the range 9 to 17 µg L?1. The recoveries of surface water samples spiked with the 5 target neonicotinoids at two concentration levels (20 and 50 µg L?1) were in the range 89 to 109 % and the % relative standard deviations ranged from 4.3 to 7.2 %.  相似文献   

15.
Taher Alizadeh 《Electroanalysis》2009,21(13):1490-1498
The design and construction of an extra high selective voltammetric sensor for parathion by using a molecularly imprinted polymer (MIP) as recognition element was introduced. A parathion selective MIP and a nonimprinted polymer (NIP) were synthesized and then incorporated in the carbon paste electrode. The MIP‐CP electrode showed very high recognition ability in comparison to NIP‐CP. It was shown that electrode washing after parathion extraction, led to enhanced selectivity. Some parameters affecting the sensor response were optimized and then the calibration curve was plotted. A dynamic linear range of 1.7–900 nM was obtained. The detection limit of the sensor was calculated as 0.5 nM. This sensor was used successfully for parathion determination in real samples such as ground water and vegetables.  相似文献   

16.
A method using commercially available sputtered bismuth screen‐printed electrodes (BispSPE), as substitute to mercury electrodes, for the determination of trace Pb(II) and Cd(II) ions in drinking well water samples collected in a contaminated area in The Republic of El Salvador by means of differential pulse anodic stripping voltammetry (DPASV) has been proposed. The comparable detection and quantification limits obtained for both BispSPE and hanging mercury drop electrode (HMDE), together with the similar results with a high reproducibility obtained in these water samples analyses recommend the applicability of BispSPE for the determination of low level of metal concentrations in natural samples.  相似文献   

17.
This work describes the development and application of an electrochemical cell specifically designed for disposable screen printed carbon electrodes (SPCE) suitable for simultaneous electrochemiluminescence (ECL) and amperometric detection in sequential injection analysis. The flow system with facility for photomultiplier tube via a fiber optic facing the SPCE is user‐friendly and makes the detection process very easy to operate. Instead of the need to constant deliver the chemiluminescence (CL) reagents to the reaction zone, sequential injection analysis allows a considerable reduction in the consumption of the sample and expensive CL reagents (such as Ru(bpy) salts). The utility of the analyzer was demonstrated for the detection of oxalate based on the ECL reaction with Ru(bpy) . Under optimized conditions, in the presence of 100 μM Ru(bpy) , the linear ranges of peak current and ECL light intensity for oxalate distinctly varied from 10 μM to 5 mM and 0.1 μM to 100 μM, respectively. In other words, the linear detection can be covered over a four‐order range with the combination of these two signals.  相似文献   

18.
Screen‐printed electrodes (SPEs) are cheap and disposable. But their application for heavy metal detection is limited due to the low sensitivity and poor selectivity. Here we report the ultrasensitive and simultaneous determination of Zn2+, Cd2+ and Pb2+ on a multiwalled carbon nanotubes and Nafion composite modified SPE with in situ plated bismuth film (MWCNTs/NA/Bi/SPE). The linear curves range from 0.5–100 µg L?1 for Zn2+ and 0.5–80 µg L?1 for Cd2+. Uniquely, the linear curve for Pb2+ ranges from 0.05–100 µg L?1 with a detection limit of 0.01 µg L?1. The practical application was verified in real samples with satisfactory results.  相似文献   

19.
Aminoquinolines are widely used as antimalarial drugs and thus there is an ever increasing demand for their determination. In this paper, non‐traditional carbon film electrode developed in our laboratory (CFE) with easily replaceable carbon film was used for the determination of 5‐aminoquinoline (5‐AQ) and compared with well‐established commercially available carbon screen printed electrode (CSPE) and gold screen printed electrode (AuSPE). Electrochemical behavior of 5‐AQ was characterized by cyclic and differential pulse voltammetry. Differences in electrochemical behavior of 5‐AQ at different electrodes were evaluated. Determination of 5‐AQ was carried out by differential pulse, square wave, and direct current voltammetry. Practical applicability of the method was verified by direct determination of 5‐AQ in model samples of drinking and river water. Achieved limits of quantitation were in submicromolar concentrations. It was found out that novel CFE in terms of overall performance is in most aspects superior to routinely used commercially available CSPE and AuSPE.  相似文献   

20.
A sensitive electroanalytical method is presented for the determination of 4‐hexylresorcinol using adsorptive stripping voltammetry (AdsSV) at a multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode (MWCNT‐BPPGE). This method is also extended to the use of a MWCNT modified screen‐printed electrode (MWCNT‐SPE), thereby demonstrating that this approach can easily be incorporated into a facile and inexpensive electrochemical sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号