首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on the momentum theorem and water-balance principle, this paper has derived the basic equations of slope runoff. Soil erosion by raindrop splash and runoff are discussed, and hillslope soil erosion processes model was established. Finally, the model was solved by numerical solution considering the common solution-determining conditions, from which not only runoff and soil erosion yield but also their processes can be obtained. The model is validated by using observation data of Soil Conservation Ecological Science & Technology Demonstration Park of Jiangxi Province. Results show that the maximum relative error between the computation and observation values of the slop runoff processes is 10% while the maximum relative error between the computation and observation values of hillslope soil erosion processes is 9.2%. This indicates that the model is conceptually realistic reasonable and offers a feasible approach for research on soil erosion process.Key words overland flow﹒raindrop splash﹒runoff erosion﹒process﹒numerical solution   相似文献   

2.
A fully coupled two‐dimensional subcritical and/or supercritical, viscous, free‐surface flow numerical model is developed to calculate bed variations in alluvial channels. Vertically averaged free‐surface flow equations in conjunction with sediment transport equation are numerically solved using an explicit finite‐volume scheme using transformed grid in order to handle complex geometry fluvial problems. Convergence is accelerated with use of a multi‐grid technique. Firstly the capabilities of the proposed method are demonstrated by analyzing subcritical and supercritical hydrodynamic flows. Thereafter, an analysis of one‐ and two‐dimensional flows is performed referring to aggradation and scouring. For all reported test cases the computed results compare reasonably well with measurements as well as with other numerical solutions. The method is stable, reliable and accurate handling a variety of sediment transport equations with rapid changes of sediment transport at the boundaries. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
坡面流及土壤侵蚀动力学(I)——————坡面流   总被引:15,自引:0,他引:15  
刘青泉  李家春  陈力  向华 《力学进展》2004,34(3):360-372
坡面流是坡面土壤侵蚀的根本动力,是研究土壤侵蚀动力学过程的基础.本文简要介绍了坡面流的基本特征和水力学特性,综述了坡面入渗产流过程、坡面流阻力,以及坡面流运动的数学描述和预报模型等方面的研究进展.指出复杂坡面条件下的坡面流运动,以及从小尺度过渡到大尺度将是今后坡面流研究的重要发展方向.   相似文献   

4.
坡面流及土壤侵蚀动力学(II)——————土壤侵蚀   总被引:12,自引:0,他引:12  
刘青泉  李家春  陈力  向华 《力学进展》2004,34(4):493-506
介绍了坡面土壤侵蚀的基本特征和主要类型, 综述了坡面土壤侵蚀动力学过程和预报模型等方面的研究进展, 包括土壤表层结皮、雨滴溅蚀、片流侵蚀、细沟侵蚀、坡面流输沙、土壤侵蚀界限坡度, 以及土壤侵蚀预报模型等. 并简要讨论了土壤侵蚀动力学研究的发展趋势.  相似文献   

5.
A numerical method based on the MacCormack finite difference scheme is presented. The method was developed for simulating two‐dimensional overland flow with spatially variable infiltration and microtopography using the hydrodynamic flow equations. The basic MacCormack scheme is enhanced by using the method of fractional steps to simplify application; treating the friction slope, a stiff source term, point‐implicitly, plus, for numerical oscillation control and stability, upwinding the convective acceleration term. A higher‐order smoothing operator is added to aid oscillation control when simulating flow over highly variable surfaces. Infiltration is simulated with the Green–Ampt model coupled to the surface water component in a manner that allows dynamic interaction. The developed method will also be useful for simulating irrigation, tidal flat and wetland circulation, and floods. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
This paper describes a numerical solver of well‐balanced, 2D depth‐averaged shallow water‐sediment equations. The equations permit variable horizontal fluid density and are designed to model water‐sediment flow over a mobile bed. A Godunov‐type, Harten–Lax–van Leer contact (HLLC) finite volume scheme is used to solve the fully coupled system of hyperbolic conservation laws that describe flow hydrodynamics, suspended sediment transport, bedload transport and bed morphological change. Dependent variables are specially selected to handle the presence of the variable density property in the mathematical formulation. The model is verified against analytical and semi‐analytical solutions for bedload transport and suspended sediment transport, respectively. The well‐balanced property of the equations is verified for a variable‐density dam break flow over discontinuous bathymetry. Simulations of an idealised dam‐break flow over an erodible bed are in excellent agreement with previously published results, validating the ability of the model to capture the complex interaction between rapidly varying flow and an erodible bed and validating the eigenstructure of the system of variable‐density governing equations. Flow hydrodynamics and final bed topography of a laboratory‐based 2D partial dam breach over a mobile bed are satisfactorily reproduced by the numerical model. Comparison of the final bed topographies, computed for two distinct sediment transport methods, highlights the sensitivity of shallow water‐sediment models to the choice of closure relationships. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A three‐dimensional numerical model has been developed to simulate stratified flows with free surfaces. The model is based on the Reynolds‐averaged Navier–Stokes (RANS) equations with variable fluid density. The equations are solved in a transformed σ‐coordinate system with the use of operator‐splitting method (Int. J. Numer. Meth. Fluids 2002; 38 :1045–1068). The numerical model is validated against the one‐dimensional diffusion problem and the two‐dimensional density‐gradient flow. Excellent agreements are obtained between numerical results and analytical solutions. The model is then used to study transport phenomena of dumped sediments into a water body, which has been modelled as a strongly stratified flow. For the two‐dimensional problem, the numerical results compare well with experimental data in terms of mean particle falling velocity and spreading rate of the sediment cloud for both coarse and medium‐size sediments. The model is also employed to study the dumping of sediments in a three‐dimensional environment with the presence of free surface. It is found that during the descending process an annulus‐like cloud is formed for fine sediments whereas a plate‐like cloud for medium‐size sediments. The model is proven to be a good tool to simulate strongly stratified free surface flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
A three‐dimensional baroclinic numerical model has been developed to compute water levels and water particle velocity distributions in coastal waters. The numerical model consists of hydrodynamic, transport and turbulence model components. In the hydrodynamic model component, the Navier–Stokes equations are solved with the hydrostatic pressure distribution assumption and the Boussinesq approximation. The transport model component consists of the pollutant transport model and the water temperature and salinity transport models. In this component, the three‐dimensional convective diffusion equations are solved for each of the three quantities. In the turbulence model, a two‐equation k–ϵ formulation is solved to calculate the kinetic energy of the turbulence and its rate of dissipation, which provides the variable vertical turbulent eddy viscosity. Horizontal eddy viscosities can be simulated by the Smagorinsky algebraic sub grid scale turbulence model. The solution method is a composite finite difference–finite element method. In the horizontal plane, finite difference approximations, and in the vertical plane, finite element shape functions are used. The governing equations are solved implicitly in the Cartesian co‐ordinate system. The horizontal mesh sizes can be variable. To increase the vertical resolution, grid clustering can be applied. In the treatment of coastal land boundaries, the flooding and drying processes can be considered. The developed numerical model predictions are compared with the analytical solutions of the steady wind driven circulatory flow in a closed basin and of the uni‐nodal standing oscillation. Furthermore, model predictions are verified by the experiments performed on the wind driven turbulent flow of an homogeneous fluid and by the hydraulic model studies conducted on the forced flushing of marinas in enclosed seas. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Sophisticated catchment runoff problems necessitate conjunctive modeling of overland flow and sub‐surface flow. In this paper, finite difference numerical methods are studied for simulation of catchment runoff of two‐dimensional surface flow interacting with three‐dimensional unsaturated and saturated sub‐surface flows. The equations representing the flows are mathematically classified as a type of heat diffusion equation. Therefore, two‐ and three‐dimensional numerical methods for heat diffusion equations were investigated for applications to the surface and sub‐surface flow sub‐models in terms of accuracy, stability, and calculation time. The methods are the purely explicit method, Saul'yev's methods, the alternating direction explicit (ADE) methods, and the alternating direction implicit (ADI) methods. The methods are first examined on surface and sub‐surface flows separately; subsequently, 12 selected combinations of methods were investigated for modeling the conjunctive flows. Saul'yev's downstream (S‐d) method was found to be the preferred method for two‐dimensional surface flow modeling, whereas the ADE method of Barakat and Clark is a less accurate, stable alternative. For the three‐dimensional sub‐surface flow model, the ADE method of Larkin (ADE‐L) and Brian's ADI method are unconditionally stable and more accurate than the other methods. The calculations of the conjunctive models utilizing the S‐d surface flow sub‐model give excellent results and confirm the expectation that the errors of the surface and sub‐surface sub‐models interact. The surface sub‐model dominates the accuracy and stability of the conjunctive model, whereas the sub‐surface sub‐model dominates the calculation time, suggesting the desirability of using a smaller time increment for the surface sub‐model. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The destruction of soil aggregates upon transport by overland flow may produce a significant effect on sediment transport capacity and general intensity of erosion. The particle size distribution of destructed soil aggregates has a close relation to the surface runoff and permeability of soils. The objective of this study is to quantify the effects of transport distance and flow discharge of overland flow on the destruction of aggregates of Ultisols in a 3.8 m long flume with a fixed bed. A series of experiments were carried out at a slope of 17.6%, including six transport distances (9–108 m) and eight discharges (0.4–1.2 L/s). The results indicate that (1) the extent of the destruction of aggregates became weaker with the decrease in size over the same transport distances or at the same discharges; (2) the aggregates derived from Shale were rapidly abraded and had more serious destruction as compared to the aggregates from Quaternary red clay during the transport process, which was relevant to the stability difference of the two parent materials; (3) two stages of aggregate breakdown could be identified in terms of the coefficient α during transport, that is, the aggregates were rapidly abraded and became round and were predominantly broken down into smaller fragments at the first stage, while the smaller fragments and the round aggregates were weakly abraded with reduction in weight and their shape became regular; and (4) the extent of the destruction decreased with increasing discharge, which was due to the changes in the hydraulic properties (flow depth and friction factor) and in movement modes during the transport process. The analysis of the characteristics on aggregate destruction by overland flow can contribute to the development of soil erosion models.  相似文献   

13.
14.
This paper presents a first‐order HLLC (Harten‐Lax‐Van Leer with contact discontinuities) scheme to solve the Saint‐Venant shallow‐water equations, including morphological evolution of the bed by erosion and deposition of sediments. The Exner equation is used to model the morphological evolution of the bed, while a closure equation is needed to evaluate the rate of sediment transport. The system of Saint‐Venant–Exner equations is solved in a fully coupled way using a finite‐volume technique and a HLLC solver for the fluxes, with a novel wave‐speed estimator adapted to the Exner equation. Wave speeds are usually derived by computing the eigenvalues of the full system, which is highly time‐consuming when no analytical expression is available. In this paper, an eigenvalue analysis of the full system is conducted, leading to simple but still accurate wave‐speed estimators. The new numerical scheme is then tested in three different situations: (1) a circular dam‐break flow over movable bed, (2) an one‐dimensional bed aggradation problem simulated on a 2D unstructured mesh and (3) the case of a dam‐break flow in an erodible channel with a sudden enlargement, for which experimental measurements are available. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
We present a new event-driven approach that combines a shallow water flow model with a practical sedimentation technique to simulate the formation of turbidite depositional systems at a stratigraphic scale. The equations that govern turbidity currents dynamics are solved using a new finite element flux-corrected transport scheme. In this sense, the low-order formulation is built by adding a novel Rusanov-like scalar dissipation scaled by a shock-capturing operator to standard Galerkin equations. From it, the high-order system is obtained by including antidiffusive fluxes linearized around the low-order solution and limited with the Zalesak's algorithm, following a minmod prelimiter. Implicit time integration with adaptive time steps is performed with an iterative nonlinear scheme that linearizes source terms. Sedimentation is implemented by carrying five granulometric fractions (clay, silt, and fine, medium, and coarse sands) along evolved streaklines and radially scattering sediments that deposit filling the available depositional space and compacting the underneath sediment layers. The flow is computed while an event discharge into an area of interest is active, or the inflow current has not reached an equilibrium state. Afterward, the event deposition step is executed. Numerical results of our flow solver presented a good agreement with available exact and literature solutions, and the simulated sediment deposits suggest that our approach is well suited for stratigraphic scale simulations.  相似文献   

16.
In this paper we present a three‐dimensional Navier–Stokes solver for incompressible two‐phase flow problems with surface tension and apply the proposed scheme to the simulation of bubble and droplet deformation. One of the main concerns of this study is the impact of surface tension and its discretization on the overall convergence behavior and conservation properties. Our approach employs a standard finite difference/finite volume discretization on uniform Cartesian staggered grids and uses Chorin's projection approach. The free surface between the two fluid phases is tracked with a level set (LS) technique. Here, the interface conditions are implicitly incorporated into the momentum equations by the continuum surface force method. Surface tension is evaluated using a smoothed delta function and a third‐order interpolation. The problem of mass conservation for the two phases is treated by a reinitialization of the LS function employing a regularized signum function and a global fixed point iteration. All convective terms are discretized by a WENO scheme of fifth order. Altogether, our approach exhibits a second‐order convergence away from the free surface. The discretization of surface tension requires a smoothing scheme near the free surface, which leads to a first‐order convergence in the smoothing region. We discuss the details of the proposed numerical scheme and present the results of several numerical experiments concerning mass conservation, convergence of curvature, and the application of our solver to the simulation of two rising bubble problems, one with small and one with large jumps in material parameters, and the simulation of a droplet deformation due to a shear flow in three space dimensions. Furthermore, we compare our three‐dimensional results with those of quasi‐two‐dimensional and two‐dimensional simulations. This comparison clearly shows the need for full three‐dimensional simulations of droplet and bubble deformation to capture the correct physical behavior. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The aim of this work is to develop a well‐balanced finite‐volume method for the accurate numerical solution of the equations governing suspended sediment and bed load transport in two‐dimensional shallow‐water flows. The modelling system consists of three coupled model components: (i) the shallow‐water equations for the hydrodynamical model; (ii) a transport equation for the dispersion of suspended sediments; and (iii) an Exner equation for the morphodynamics. These coupled models form a hyperbolic system of conservation laws with source terms. The proposed finite‐volume method consists of a predictor stage for the discretization of gradient terms and a corrector stage for the treatment of source terms. The gradient fluxes are discretized using a modified Roe's scheme using the sign of the Jacobian matrix in the coupled system. A well‐balanced discretization is used for the treatment of source terms. In this paper, we also employ an adaptive procedure in the finite‐volume method by monitoring the concentration of suspended sediments in the computational domain during its transport process. The method uses unstructured meshes and incorporates upwinded numerical fluxes and slope limiters to provide sharp resolution of steep sediment concentrations and bed load gradients that may form in the approximate solutions. Details are given on the implementation of the method, and numerical results are presented for two idealized test cases, which demonstrate the accuracy and robustness of the method and its applicability in predicting dam‐break flows over erodible sediment beds. The method is also applied to a sediment transport problem in the Nador lagoon.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
坡面降雨径流和土壤侵蚀的数值模拟   总被引:16,自引:0,他引:16  
戚隆溪  黄兴法 《力学学报》1997,29(3):343-348
利用水力学原理建立了坡面降雨径流和土壤侵蚀模型,分别采用特征线法和有限差分法对径流量和土壤侵蚀量进行了求解,并针对具体降雨事件进行了模拟计算,计算结果与试验小区实测值基本一致.本研究表明水土流失随着降雨强度和坡度的增大而加剧,特别是坡度引起的土壤侵蚀  相似文献   

19.
This paper deals with the numerical discretization of two‐dimensional depth‐averaged models with porosity. The equations solved by these models are similar to the classic shallow water equations, but include additional terms to account for the effect of small‐scale impervious obstructions which are not resolved by the numerical mesh because their size is smaller or similar to the average mesh size. These small‐scale obstructions diminish the available storage volume on a given region, reduce the effective cross section for the water to flow, and increase the head losses due to additional drag forces and turbulence. In shallow water models with porosity these effects are modelled introducing an effective porosity parameter in the mass and momentum conservation equations, and including an additional drag source term in the momentum equations. This paper presents and compares two different numerical discretizations for the two‐dimensional shallow water equations with porosity, both of them are high‐order schemes. The numerical schemes proposed are well‐balanced, in the sense that they preserve naturally the exact hydrostatic solution without the need of high‐order corrections in the source terms. At the same time they are able to deal accurately with regions of zero porosity, where the water cannot flow. Several numerical test cases are used in order to verify the properties of the discretization schemes proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
We present a mathematical model for multicomponent gas transport in an anisotropic fuel cell electrode.The model couples the Maxwell–Stefan equations for multicomponent diffusion along with Darcy's law for flow in a porous medium. The equations are discretized using a finite volume approach with the method of lines, and the resulting non‐linear system of differential equations is integrated in time using a stiff ODE solver. Numerical simulations are performed to validate the model and to investigate the effect of various parameters on fuel cell performance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号