首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Convergent syntheses of the 9‐(3‐X‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranosyl)adenines 5 (X=N3) and 7 (X=NH2), as well as of their respective α‐anomers 6 and 8 , are described, using methyl 2‐azido‐5‐O‐benzoyl‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranoside ( 4 ) as glycosylating agent. Methyl 5‐O‐benzoyl‐2,3‐dideoxy‐2,3‐difluoro‐β‐D ‐ribofuranoside ( 12 ) was prepared starting from two precursors, and coupled with silylated N6‐benzoyladenine to afford, after deprotection, 2′,3′‐dideoxy‐2′,3′‐difluoroadenosine ( 13 ). Condensation of 1‐O‐acetyl‐3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐β‐D ‐ribofuranose ( 14 ) with silylated N2‐palmitoylguanine gave, after chromatographic separation and deacylation, the N7β‐anomer 17 as the main product, along with 2′‐deoxy‐2′‐fluoroguanosine ( 15 ) and its N9α‐anomer 16 in a ratio of ca. 42 : 24 : 10. An in‐depth conformational analysis of a number of 2,3‐dideoxy‐2‐fluoro‐3‐X‐D ‐ribofuranosides (X=F, N3, NH2, H) as well as of purine and pyrimidine 2‐deoxy‐2‐fluoro‐D ‐ribofuranosyl nucleosides was performed using the PSEUROT (version 6.3) software in combination with NMR studies.  相似文献   

2.
Oligonucleotides incorporating the regioisomeric 4‐nitroindazole N1‐ and N2‐(2′‐deoxy‐β‐D ‐ribofuranosides) 7 and 8 were synthesized and their base‐pairing properties investigated. For solid‐phase synthesis, the phosphoramidites 11 and 12 were prepared. Oligonucleotides containing the building block 7 or 8 show ambiguous base pairing. Duplexes have similar Tm values when the modified bases are positioned opposite to the four canonical DNA constituents. The glycosylation position of the regioisomeric 4‐nitroindazole nucleosides has very little influence on the duplex stability.  相似文献   

3.
The 1,3,4,6‐tetra‐O‐acetyl‐2‐azido‐2‐deoxy‐β‐D ‐mannopyranose ( 4 ) or the mixture of 1,3,6‐tri‐O‐acetyl‐2‐azido‐2‐deoxy‐4‐O‐(2,3,4,6‐tetra‐O‐acetyl‐β‐D ‐galactopyranosyl)‐β‐D ‐mannopyranose ( 10 ) and the corresponding α‐D ‐glucopyranose‐type glycosyl donor 9 / 10 reacted at room temperature with protected nucleosides 12 – 15 in CH2Cl2 solution in the presence of BF3?OEt2 as promoter to give 5′‐O‐(2‐azido‐2‐deoxy‐α‐D ‐glycosyl)nucleosides in reasonable yields (Schemes 2 and 3). Only the 5′‐O‐(α‐D ‐mannopyranosyl)nucleosides were obtained. Compounds 21, 28, 30 , and 31 showed growth inhibition of HeLa cells and hepatoma Bel‐7402 cells at a concentration of 10 μM in vitro.  相似文献   

4.
Iodination of N2‐isobutyryl‐5‐aza‐7‐deazaguanine ( 7 ) with N‐iodosuccinimide (NIS) gave 7‐iodo‐N2‐isobutyryl‐5‐aza‐7‐deazaguanine ( 8 ) in a regioselective reaction (Scheme 1). Nucleobase‐anion glycosylation of 8 with 2‐deoxy‐3,5‐di‐O‐toluoyl‐α‐D ‐ or α‐L ‐erythro‐pentofuranosyl chloride furnished anomeric mixtures of D ‐ and L ‐nucleosides. The anomeric D ‐nucleosides were separated by crystallization to give the α‐D ‐anomer and β‐D ‐anomer with excellent optical purity. Deprotection gave the 7‐iodo‐5‐aza‐7‐deazaguanine 2′‐deoxyribonucleosides 3 (β‐D ; ≥99% de) and 4 (α‐D ; ≥99% de). The reaction sequence performed with the D ‐series was also applied to L ‐nucleosides to furnish compounds 5 (β‐L ; ≥99% de) and 6 (α‐L ; ≥95% de).  相似文献   

5.
The preparation and the pairing properties of the new 3′‐deoxyribopyranose (4′→2′)‐oligonucleotide (=p‐DNA) pairing system, based on 3′‐deoxy‐β‐D ‐ribopyranose nucleosides is presented. D ‐Xylose was efficiently converted to the prefunctionalized 3‐deoxyribopyranose derivative 4‐O‐[(tert‐butyl)dimethylsilyl]‐3‐deoxy‐D ‐ribopyranose 1,2‐diacetate 8 (obtained as a 4 : 1 mixture of α‐ and β‐D ‐anomers; Scheme 1). From this sugar building block, the corresponding, appropriately protected thymine, guanine, 5‐methylcytosine, and purine‐2,6‐diamine nucleoside phosphoramidites 29 – 32 were prepared in a minimal number of steps (Schemes 2–4). These building blocks were assembled on a DNA synthesizer, and the corresponding p‐DNA oligonucleotides were obtained in good yields after a one‐step deprotection under standard conditions, followed by HPLC purification (Scheme 5 and Table 1). Qualitatively, p‐DNA shows the same pairing behavior as p‐RNA, forming antiparallel, exclusively Watson‐Crick‐paired duplexes that are much stronger than corresponding DNA duplexes. Duplex stabilities within the three related (i.e., based on ribopyranose nucleosides) oligonucleotide systems p‐RNA, p‐DNA, and 3′‐O‐Me‐p‐RNA were compared with each other (Table 2). Intrinsically, p‐RNA forms the strongest duplexes, followed by p‐DNA, and 3′‐O‐Me‐p‐RNA. However, by introducing the nucleobases purine‐2,6‐diamine (D) and 5‐methylcytosine (M) instead of adenine and cytosine, a substantial increase in stability of corresponding p‐DNA duplexes was observed.  相似文献   

6.
Two modified DNA 14‐mers have been prepared, containing either a 2‐deoxy‐D ‐erythrose‐derived adenosine analogue carrying a C(8)−CH2O group (deA*), or a 2‐deoxy‐D ‐erythrose‐derived uridine analogue, possessing a C(6)−CH2O group (deU*). These nucleosides are linked via a phosphinato group between O−C(3′) (deA* and deU*) and O−C(5′) of one neighbouring nucleotide, and between C(8)−CH2O (deA*), or C(6)−CH2O (deU*) and O−C(3′) of the second neighbour. N6‐Benzoyl‐9‐(β‐D ‐erythrofuranosyl)adenine ( 3 ) and 1‐(β‐D ‐erythrofuranosyl)uracil ( 4 ) were prepared from D ‐glucose, deoxygenated at C(2′), and converted into the required phosphoramidites 1 and 2 . The modified tetradecamers 31 and 32 were prepared by solid‐phase synthesis. Pairing studies show a decrease in the melting temperature of 7 to 8 degrees for the duplexes 31 ⋅ 30 and 32 ⋅ 29 , as compared to the unmodified DNA duplex 29 ⋅ 30 . A comparison with the pairing properties of tetradecamers similarly incorporating deoxyribose‐ instead of the deoxyerythrose‐derived nucleotides evidences that the CH2OH substituent at C(4′) has no significant effect on the pairing.  相似文献   

7.
The chemical synthesis of isoxanthopterin and 6‐phenylisoxanthopterin N8‐(2′‐deoxy‐β‐D ‐ribofuranosyl nucleosides) is described as well as their conversion into suitably protected 3′‐phosphoramidite building blocks to be used as marker molecules for DNA synthesis. Applying the npe/npeoc (=2‐(4‐nitrophenyl)ethyl/[2‐(4‐nitrophenyl)ethoxy]carbonyl) strategy, we used the new building blocks in the preparation of oligonucleotides by an automated solid‐support approach. The hybridization properties of a series of labelled oligomers were studied by UV‐melting techniques. It was found that the newly synthesized markers only slightly interfered with the abilities of the labelled oligomers to form stable duplexes with complementary oligonucleotides.  相似文献   

8.
9‐(3‐Deoxy‐β‐D ‐erythro‐pentofuranosyl)‐2,6‐diaminopurine ( 6 ) was synthesized by an enzymatic transglycosylation of 2,6‐diaminopurine ( 2 ) with 3′‐deoxycytidine ( 1 ) as a donor of 3‐deoxy‐D ‐erythro‐pentofuranose moiety. This transformation comprises i) deamination of 1 to 3′‐deoxyuridine ( 3 ) under the action of whole cell (E. coli BM‐11) cytidine deaminase (CDase), ii) the phosphorolytic cleavage of 3 by uridine phosphorylase (UPase) giving rise to the formation of uracil ( 4 ) and 3‐deoxy‐α‐D ‐erythro‐pentofuranose‐1‐O‐phosphate ( 5 ), and iii) coupling of the latter with 2 catalyzed by whole cell (E. coli BMT‐4D/1A) purine nucleoside phosphorylase (PNPase). Deamination of 6 by adenosine deaminase (ADase) gave 3′‐deoxyguanosine ( 7 ). Treatment of 6 with NaNO2 afforded 9‐(3‐deoxy‐β‐D ‐erythro‐pentofuranosyl)‐2‐amino‐6‐oxopurine (3′‐deoxyisoguanosine; 8 ). Schiemann reaction of 6 (HF/HBF4+NaNO2) gave 9‐(3‐deoxy‐β‐D ‐erythro‐pentofuranosyl)‐2‐fluoroadenine ( 9 ).  相似文献   

9.
Oligonucleotides incorporating 7‐deaza‐2′‐deoxyxanthosine ( 3 ) and 2′‐deoxyxanthosine ( 1 ) were prepared by solid‐phase synthesis using the phosphoramidites 6 – 9 and 16 which were protected with allyl, diphenylcarbamoyl, or 2‐(4‐nitrophenyl)ethyl groups. Among the various groups, only the 2‐(4‐nitrophenyl)ethyl group was applicable to 7‐deazaxanthine protection being removed with 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) by β‐elimination, while the deprotection of the allyl residue with Pd0 catalyst or the diphenylcarbamoyl group with ammonia failed. Contrarily, the allyl group was found to be an excellent protecting group for 2′‐deoxyxanthosine ( 1 ). The base pairing of nucleoside 3 with the four canonical DNA constituents as well as with 3‐bromo‐1‐(2‐deoxy‐β‐D ‐erythro‐pentofuranosyl)‐1H‐pyrazolo[3,4‐d]pyrimidine‐4,6‐diamine ( 4 ) within the 12‐mer duplexes was studied, showing that 7‐deaza‐2′‐deoxyxanthosine ( 3 ) has the same universal base‐pairing properties as 2′‐deoxyxanthosine ( 1 ). Contrary to the latter, it is extremely stable at the N‐glycosylic bond, while compound 1 is easily hydrolyzed under slightly acidic conditions. Due to the pKa values 5.7 ( 1 ) and 6.7 ( 3 ), both compounds form monoanions under neutral conditions (95% for 1 ; 65% for 3 ). Although both compounds form monoanions at pH 7.0, pH‐dependent Tm measurements showed that the base‐pair stability of 7‐deaza‐2′‐deoxyxanthosine ( 3 ) with dT is pH‐independent. This indicates that the 2‐oxo group is not involved in base‐pair formation.  相似文献   

10.
In the context of Eschenmoser's work on pyranosyl‐RNA (‘p‐RNA’), we investigated the synthesis and base‐pairing properties of the 5‐methylisocytidine derivative. The previously determined clear‐cut restrictions of base‐pairing modes of p‐RNA had led to the expectation that a 5‐methylisocytosine β‐D ‐ribopyranosyl (= D ‐pr(MeisoC)) based (4′ → 2′)‐oligonucleotide would pair inter alia with D ‐pr(isoG) and L ‐pr(G) based oligonucleotides (D ‐pr and L ‐pr = pyranose form of D ‐ and L ‐ribose, resp.). Remarkably, we could not observe pairing with the D ‐pr(isoG) oligonucleotide but only with the L ‐pr(G) oligonucleotide. Our interpretation concludes that this – at first hand surprising – observation is caused by a change in the nucleosidic torsion angle specific for isoC.  相似文献   

11.
A general synthesis of the four isomeric N7α‐D ‐, N7β‐D ‐, N9α‐D ‐, and N9β‐D ‐(purin‐2‐amine deoxynucleoside phosphoramidite) building blocks for DNA synthesis is described (Scheme). The syntheses start with methyl 3′,5′‐di‐O‐acetyl‐2′‐deoxy‐D ‐ribofuranoside ( 2 ) as the sugar component and the N2‐acetyl‐protected 6‐chloropurin‐2‐amine 1 as the base precursor. N7‐Selectivity was achieved by kinetic control, and N9‐selectivity by thermodynamic control of the nucleosidation reaction. The two N7‐(purin‐2‐amine deoxynucleosides) were introduced into the center of a decamer DNA duplex, and their pairing preferences were analyzed by UV‐melting curves. Both the N7α‐D ‐ and N7β‐D ‐(purin‐2‐amine nucleotide) units preferentially pair with a guanine base within the Watson‐Crick pairing regime, with ΔTms of −6.7 and −8.7 K, respectively, relative to a C⋅G base pair (Fig. 3 and Table 1). Molecular modeling suggests that, in the former base pair, the purinamine base is rotated into the syn‐arrangement and is able to form three H‐bonds with O(6), N(1), and NH2 of guanine, whereas in the latter base pair, both bases are in the anti‐arrangement with two H‐bonds between the N(3) and NH2 of guanine, and NH2 and N(1) of the purin‐2‐amine base (Fig. 4).  相似文献   

12.
In the title regioisomeric nucleosides, alternatively called 1‐(2‐deoxy‐β‐d ‐erythro‐furan­osyl)‐1H‐pyrazolo­[3,4‐d]­pyrimidine, C10H12N4O3, (II), and 2‐(2‐deoxy‐β‐d ‐erythro‐furan­osyl)‐2H‐pyrazolo­[3,4‐d]pyrimidine, C10H12N4O3, (III), the conformations of the gly­cosyl­ic bonds are anti [?100.4 (2)° for (II) and 15.0 (2)° for (III)]. Both nucleosides adopt an S‐type sugar pucker, which is C2′‐endo‐C3′‐exo (2T3) for (II) and 3′‐exo (between 3E and 4T3) for (III).  相似文献   

13.
Nucleobase‐anion glycosylation of 2‐[(2‐methyl‐1‐oxopropyl)amino]imidazo[1,2‐a]‐1,3,5‐triazin‐4(8H)‐one ( 6 ) with 3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐α‐D ‐arabinofuranosyl bromide ( 8 ) furnishes a mixture of the benzoyl‐protected anomeric 2‐amino‐8‐(2‐deoxy‐2‐fluoro‐D ‐arabinofuranosyl)imidazo[1,2‐a]‐1,3,5‐triazin‐4(8H)‐ones 9 / 10 in a ratio of ca. 1 : 1. After deprotection, the inseparable anomeric mixture 3 / 4 was silylated. The obtained 5‐O‐[(1,1‐dimethylethyl)diphenylsilyl] derivatives 11 and 12 were separated and desilylated affording the nucleoside 3 and its α‐D anomer 4 . Similar to 2′‐deoxy‐2′‐fluoroarabinoguanosine, the conformation of the sugar moiety is shifted from S towards N by the fluoro substituent in arabino configuration.  相似文献   

14.
The synthesis of the N9‐ and N8‐(β‐D ‐2′‐deoxyribonucleosides) 2 and 10 , respectively, of 8‐aza‐7‐deazapurin‐2‐amine (=1H‐pyrazolo[3,4‐d]pyrimidin‐6‐amine) is described. The fluorescence properties and the stability of the N‐glycosylic bond of 2 were determined and compared with those of the 2′‐deoxyribonucleosides 1 and 3 of purin‐2‐amine and 7‐deazapurin‐2‐amine respectively. From the nucleoside 2 , the phosphoramidite 14 was prepared, and oligonucleotides were synthesized. Duplexes containing compound 1 or 2 are slightly less stable than those containing 2′‐deoxyadenosine, while their CD spectra are rather different. The fluorescence of the nucleosides is strongly quenched (>95%) in single‐stranded as well as in duplex DNA. The residual fluorescence was used to determine the melting profiles, which gave Tm values similar to those determined from the UV melting curves.  相似文献   

15.
A reliable and high yielding synthetic pathway for the synthesis of the biologically highly important class of nucleoside diphosphate sugars (NDP‐sugars) was developed by using various cycloSal‐nucleotides 1 and 9 as active ester building blocks. The reaction with anomerically pure pyranosyl‐1‐phosphates 2 led to the target NDP‐sugars 20 – 45 in a nucleophilic displacement reaction, which cleaves the cycloSal moiety in anomerically pure forms. As nucleosides cytidine, uridine, thymidine, adenosine, 2′‐deoxy‐guanosine and 2′,3′‐dideoxy‐2′,3′‐didehydrothymidine were used while the phosphates of D ‐glucose, D ‐galactose, D ‐mannose, D ‐NAc‐glucosamine, D ‐NAc‐galactosamine, D ‐fucose, L ‐fucose as well as 6‐deoxy‐D ‐gulose were introduced.  相似文献   

16.
The syntheses of N7‐glycosylated 9‐deazaguanine 1a as well as of its 9‐bromo and 9‐iodo derivatives 1b , c are described. The regioselective 9‐halogenation with N‐bromosuccinimide (NBS) and N‐iodosuccinimide (NIS) was accomplished at the protected nucleobase 4a (2‐{[(dimethylamino)methylidene]amino}‐3,5‐dihydro‐3‐[(pivaloyloxy)methyl]‐4H‐pyrrolo[3,2‐d]pyrimidin‐4‐one). Nucleobase‐anion glycosylation of 4a – c with 2‐deoxy‐3,5‐di‐O‐(p‐toluoyl)‐α‐D ‐erythro‐pentofuranosyl chloride ( 5 ) furnished the fully protected intermediates 6a – c (Scheme 2). They were deprotected with 0.01M NaOMe yielding the sugar‐deprotected derivatives 8a – c (Scheme 3). At higher concentrations (0.1M NaOMe), also the pivaloyloxymethyl group was removed to give 7a – c , while conc. aq. NH3 solution furnished the nucleosides 1a – c . In D2O, the sugar conformation was always biased towards S (67–61%).  相似文献   

17.
Oligonucleotides composed of 1′,5′‐anhydro‐arabino‐hexitol nucleosides belonging to the L series (L ‐HNA) were prepared and preliminarily studied as a novel potential base‐pairing system. Synthesis of enantiopure L ‐hexitol nucleotide monomers equipped with a 2′‐(N6‐benzoyladenin‐9‐yl) or a 2′‐(thymin‐1‐yl) moiety was carried out by a de novo approach based on a domino reaction as key step. The L oligonucleotide analogues were evaluated in duplex formation with natural complements as well as with unnatural sugar‐modified oligonucleotides. In many cases stable homo‐ and heterochiral associations were found. Besides Tm measurements, detection of heterochiral complexes was unambiguously confirmed by LC‐MS studies. Interestingly, circular dichroism measurements of the most stable duplexes suggested that L ‐HNA form left‐handed helices with both D and L oligonucleotides.  相似文献   

18.
In the title compound, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐1H‐benzotriazole, C11H14N4O3, the conformation of the N‐glycosidic bond is in the high‐anti range [χ = ?77.1 (4)°] and the 2′‐deoxy­ribo­furan­ose moiety adopts a 2′‐­endo (2E) sugar puckering. The 5′‐hydroxyl group is disordered and has conformations ap with γ = 171.1 (3)° [occupation of 61.4 (3)%] and +sc with γ = 52.4 (6)° [occupation of 38.6 (3)%]. The nucleobases are stacked in the crystal state.  相似文献   

19.
Dipeptide‐conjugated nucleosides were efficiently synthesized from the intermediates of 3′‐amino‐3′‐deoxy‐nucleosides by using the solid‐phase synthetic strategy with HOBt/HBTU (1‐hydroxy‐1H‐benzotriazole/2‐(1H‐benzotriazol‐1‐yl)‐1,1,3,3‐tetramethyluronium hexafluoroborate) as the coupling reagents (Schemes 1–3). CD Spectra and thermal melting studies showed that the synthesized hydrophobic dipeptide? thymidine and ? uridine derivatives 8a – 8d, 13a – d , and 18 had a mild affinity with the polyA?polyU duplex and could induce the change of RNA conformation. The results also implied that the interaction of conjugates with RNA might be related to the sugar pucker conformation of the nucleoside.  相似文献   

20.
An efficient synthesis of (S)‐ or (R)‐3‐(benzyloxy‐methyl)‐cyclopent‐3‐enol was developed by appling an enzyme‐catalyzed kinetic‐resolution approach. This procedure allowed the syntheses of the enantiomeric building blocks (S)‐ and (R)‐cyclopentenol with high optical purity (>98 % ee). In contrast to previous approaches, the key advantage of this procedure is that the resolution is done on the level of enantiomers that only contain one stereogenic center. Owing to this feature, it was possible to chemically convert the enantiomers into each other. By using this route, the starting materials for the syntheses of carbocyclic D ‐ and L ‐nucleoside analogues were readily accessible. 3′,4′‐Unsaturated D ‐ or L ‐carbocyclic nucleosides were obtained from the condensation of various nucleobases with (S)‐ or (R)‐cyclopentenol. Functionalization of the double bond in 3′‐deoxy‐3′,4′‐didehydro‐carba‐D ‐thymidine led to a variety of new nucleoside analogues. By using the cycloSal approach, their corresponding phosphorylated metabolites were readily accessable. Moreover, a new synthetic route to carbocyclic 2′‐deoxy‐nucleosides was developed, thereby leading to D ‐ and L ‐carba‐dT. D ‐Carba‐dT was tested for antiviral activity against multidrug‐resistance HIV‐1 strain E2‐2 and compared to the known antiviral agent d4T, as well as L ‐carba‐dT. Whilst L ‐carba‐dT was found to be inactive, its D ‐analogue showed remarkably high activity against the resistant virus and significantly better than that of d4T. However, against the wild‐type virus strain NL4/3, d4T was found to be more‐active than D ‐carba‐dT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号