首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2004,16(18):1508-1513
A stripping voltammetric method for the determination of ethylenethiourea in water samples is described based on its adsorptive deposition at the hanging mercury drop electrode (HMDE). In a borate buffer (pH 9.0) as supporting electrolyte, ETU is deposited at +100 mV (vs. Ag/AgCl) and stripped during the cathodic scan. The linear range for the measurements was from 2.0 to 100 μg L?1, with a detection limit calculated as 1.4 μg L?1 after a deposition time of 300 s and a RSD of 1.9% (n=5) for 50 μg L?1 of ETU measured. The interferences of some organic compounds and metallic ions were tested. Recoveries between 93 and 110% were obtained using the standard addition method for spiked samples of natural and drinking waters. The method is rapid and applicable in the monitoring of ETU residues in water samples.  相似文献   

2.
An electrochemical method for the determination of carbaryl, after prior oxidation to 1,4-naphthoquinone in natural water and soils is reported. The coulometric oxidation of carbaryl at a platinum electrode was studied using 0.024 mol/L Britton-Robinson buffer (pH 7.0). The reduction of the oxidation product 1,4-naphthoquinone at a dropping mercury electrode was used for the indirect determination of carbaryl after separation on C18 Sep-pak cartridges by differential pulse polarography (detection limits: 0.41 mg L?1 of water and 0.47 mg kg?1 of soil) and directly without separation by adsorptive stripping voltammetry (detection limits: 5 μg L?1 of water and 7 μg kg?1 of soil, for 75 s preconcentration time). Relative errors were lower than 3.7% and relative standard deviations smaller than 4.5%.  相似文献   

3.
《Electroanalysis》2006,18(6):573-578
The electroanalytical detection of trace mercury(II) at gold ultra‐microelectrode arrays is reported. The arrays consist of 256 gold microelectrodes of 5 μm in diameter in cubic arrangements which are separated from their nearest neighbor by 100 μm. The array was utilized in nitric acid using linear sweep voltammetry where a linear response from mercury additions over the range 10 μg L?1?200 μg L?1 (10?8?10?6 M) was observed with a sensitivity and detection limit of 0.11 nC/μg L?1 and 3.2 μg L?1 (16 nM) respectively from using a deposition time of 30 s at ?0.2 V (vs. SCE). This methodology was explored in 0.1 and 1 M chloride media over the mercury range 10 μg L?1?200 μg L?1 (5×10?8?10?6 M) where similar sensitivities of 0.087 nC/μg L?1 and 0.078 nC/μg L?1 were observed with an identical detection limit. The protocol is demonstrated to be useful for the determination of mercury for analysis of environmental water samples.  相似文献   

4.
Robert Piech 《Electroanalysis》2009,21(16):1842-1847
A new adsorptive stripping voltammetric method for the determination of trace gallium(III) based on the adsorption of gallium(III)‐catechol complex on the cyclic renewable mercury film silver based electrode (Hg(Ag)FE) is presented. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 2 nM (0.14 μg L?1) to 100 nM (6.97 μg L?1) for a preconcentration time of 30 s, with correlation coefficient of 0.9993. For a Hg(Ag)FE with a surface area of 9.7 mm2 the detection limit for a preconcentration time of 90 s is as low as 7 ng L?1. The repeatability of the method at a concentration level of the analyte as low as 0.05 μg L?1, expressed as RSD is 3.6% (n=5). The proposed method was successfully applied by studying the natural samples and simultaneous recovery of Ga(III) from spiked water and sediment samples.  相似文献   

5.
In the work the procedure of chromium(VI) determination by catalytic adsorptive stripping voltammetry (CAdSV) with application of fumed silica, is presented. Two variants of the method are proposed: in the first fumed silica is put directly to the electrolytic cell containing tested solution, in the second the silica is shaken with the sample and next centrifuged. The effectiveness of many surface‐active substances removal from synthetic solutions as well as natural water samples, is studied. In the experiments the fumed silica (Sigma‐Aldrich) of the specific surface area in the range 200–390 m2 g?1 was used. Two types of the working electrodes were applied, i.e., hanging mercury drop electrode (HMDE) and cyclic renewable mercury film electrode (Hg(Ag)FE). In the silica presence i) the relative standard deviation (RSD) for 0.1 μg L?1 Cr(VI) is <2% (HMDE) and <5% (Hg(Ag)FE), n=7, ii) the detection limits estimated deposition time 20 s were respectively 14 ng L?1 (HMDE) and 22 ng L?1 (Hg(Ag)FE). The accuracy of the method was tested by studying the recovery of Cr(VI) from spiked natural water samples.  相似文献   

6.
Robert Piech 《Electroanalysis》2010,22(16):1851-1856
A new adsorptive stripping voltammetric method for the determination of trace scandium(III) based on the adsorption of scandium(III)‐mordant blue 9 complex on the cyclic renewable mercury film silver based electrode (Hg(Ag)FE) is presented. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 2 nM (0.09 μg L?1) to 90 nM (4 μg L?1) for a preconcentration time of 45 s, with correlation coefficient of 0.9995. For a Hg(Ag)FE with a surface area of 7.9 mm2 the detection limit for a preconcentration time of 90 s is as low as 5 ng L?1. The repeatability of the method at a concentration level of the analyte as low as 0.2 μg L?1, expressed as RSD is 1.9 % (n=5). The proposed method was successfully applied and validated by studying the certified reference material (CRM 320 – river sediment) and natural samples with simultaneous recovery of Sc(III) from spiked water and sediment samples.  相似文献   

7.
A carbon paste electrode modified with 2‐aminothiazole functionalized poly(glycidylmethacrylate‐methylmethacrylate‐divinylbenzene) microspheres was used for trace determination of mercury, copper and lead ions. After the open‐circuit accumulation of the heavy metal ions onto the electrode, the sensitive anodic stripping peaks were obtained by square wave anodic stripping voltammetry (SWASV)). Many parameters such as the composition of the paste, pH, preconcentration time, effective potential scan rate and stirring rate influence the response of the measurement. The procedures were optimized for most sensitive and reliable determinations of the desired species. For a 10‐min preconcentration time in synthetic solutions at optimum instrumental and experimental conditions, the detection limit (LOD) was 12.3, 2.8 and 4.5 μg L?1 for mercury, copper and lead, respectively. The limits of detection may be enhanced by increasing the preconcentration time. For example, LOD of mercury and copper was 4.9 and 1.0 μg L?1 for fifteen minutes preconcentration time. The sensitivity may also considered to be increased by using a more suitable electrode composition targeting the more conductive electrode with lesser amount of modified polymer for sub‐μg L?1 levels of heavy metal ions. The optimized method was successfully applied to the determination of copper in tap water and waste water samples by means of standard addition procedure. The copper content found was comparable with the certified concentration of the waste water sample. The calibration plots for mercury and lead spiked real samples were also drawn.  相似文献   

8.
《Electroanalysis》2006,18(11):1081-1089
This paper describes the voltammetric behavior of As(III) at the hanging mercury drop electrode (HMDE) in the presence of sodium diethyl dithiocarbamate (SDDC) and a new voltammetric method for the determination of As(III) at trace levels. The method is based on the adsorptive deposition of a As(III) complex with SDDC at ?0.45 V (vs. Ag/AgCl) on the HMDE in acidic medium of 0.01 mol L?1 HCl (pH 2.0) and its cathodic stripping during the potential scan (100 mV s?1). The linear range for the determination of As(III) in the presence of SDDC (4 μmol L?1) in water samples was between 1 and 10 μg L?1 for a deposition time of 300 s (r=0.994) and between 10 and 100 μg L?1 for a deposition time of 60 s (r=0.999). For the determination of As(III) in dialysis concentrate samples, the linear range was between 5 and 25 μg L?1 for a deposition time of 180 s (r=0.992) and between 10 and 100 μg L?1 for a deposition time of 60 s (r=0.996). Detection limits of 0.3 and 2.2 μg L?1 in water and dialysis concentrate samples were calculated for the method using a deposition time of 300 and 180 s, respectively. Recovery values between 93.0 and 110.0% for As(III) added to deionized, mineral, seawater (synthetic and real) and dialysis concentrate samples prove the satisfactory accuracy and applicability of the procedure.  相似文献   

9.
《Electroanalysis》2006,18(12):1202-1207
A new type of current sensor, Langmuir–Blodgett (LB) film of calixarene on the surface of glassy carbon electrode (GCE) was prepared for determination of mercury by anodic stripping voltammetry (ASV). An anodic stripping peak was obtained at 0.15 V (vs. SCE) by scanning the potential from ?0.6 to +0.6 V. Compared with a bare GCE, the LB film coated electrode greatly improves the sensitivity of measuring mercury ion. The fabricated electrode in a 0.1 M H2SO4+0.01 M HCl solution shows a linear voltammetric response in the range of 0.07–40 μg L?1 and detection limit of 0.04 μg L?1 (ca. 2×10?10 M). The high sensitivity, selectivity, and stability of this LB film modified electrode demonstrates its practical application for a simple, rapid and economical determination of Hg2+ in a water sample.  相似文献   

10.
A square wave cathodic stripping voltammetric (SWCSV) method has been developed for the determination of insecticide diafenthiuron. The procedure is based on controlled accumulation of the insecticide on a static hanging mercury drop electrode (SHMDE) at 0.00?mV (vs. Ag/AgCl) in Britton-Robinson buffer solution (pH 7.0). The insoluble mercury compound was reduced at ?510?mV during the cathodic potential scan. The peak currents were linearly related to insecticide concentration between 30.4 and 3200?µg?L?1 . The detection and quantification limit were 9.1?µg?L?1 and 30.4?µg?L?1, respectively. The proposed analytical procedure was applied to natural water and soil samples. The method was extended to direct determination of diafenthiuron in insecticide formulation Polo® 50 WP and average content of 50.3?±?1.7 (m/m) at 90% confidence level, in close agreement with the 50.0% quoted by the manufacturer. HPLC comparison method indicated that accuracy was in agreement with that obtained by the proposed method.  相似文献   

11.
This paper describes a new voltammetric procedure for the inorganic speciation of As(III) and As(V) in water samples. The procedure is based on the chemical reduction of arsenate [As(V)] to arsenite [As(III)] followed by the voltammetric determination of total arsenic as As(III) at the hanging mercury drop electrode (HMDE) by adsorptive cathodic stripping voltammetry (AdCSV) in the presence of sodium diethyl dithiocarbamate (SDDC). The reduction step involved the reaction with a mixture of Na2S2O5 and Na2S2O3 in the concentrations 2.5 and 0.5 mg mL?1, respectively, and the sample heating at 80 °C for 45 min. The linear range for the determination of total arsenic as As(III) in the presence of SDDC was between 5 and 150 μg L?1 for a deposition time of 60 s (r=0.992). A detection limit of 1.05 μg L?1 for total As was calculated for the method in water samples using a deposition time of 60 s. The detection limits of 4.2 μg L?1 and 15.0 μg L?1 for total As in seawater and dialysis concentrates, respectively, were calculated using a deposition time of 60 s. The relative standard deviations calculated were 2.5 and 4.0% for five measurements of 20 μg L?1 As(V) as As(III) in water and dialysis concentrates, respectively, after chemical reduction under optimized conditions. The method was applied for the determination of As(III) and total As in samples of dialysis water, mineral water, seawater and dialysis concentrates. Recovery values between 86.0 and 104.0% for As(III) and As(V) added to the samples prove the satisfactory accuracy and applicability of the procedure for the arsenic monitoring.  相似文献   

12.
The antimony film electrode (SbFE) was prepared ex situ for anodic and adsorptive stripping voltammetric measurement of selected heavy metal ions. The electrode revealed good linearity for Cd(II) and Pb(II) in a nondeaerated solution of 0.01 M HCl in the examined concentration range from 25 to 80 μg L?1 with limits of detection of 1.1 μg L?1 for Cd(II) and 0.3 μg L?1 for Pb(II) and an excellent reproducibility. The preplated SbFE was also preliminary tested for measuring low levels of Ni(II) using adsorptive stripping voltammetry exhibiting good linearity and sensitivity in combination with only a 30 s deposition step.  相似文献   

13.
《Electroanalysis》2004,16(7):524-531
In this work we report a new electrode material formed by injection‐moulding of a conducting polymer consisting of carbon fibers in a Nylon matrix. This material is highly conductive, inexpensive, easy to mould in different shapes and requires minimal pretreatment. The electrode was tested as a mercury‐free sensor for the trace determination of Cu(II) by anodic stripping voltammetry (ASV). The deposition and stripping behavior of copper on the conducting material was initially studied by cyclic voltammetry and the chemical and instrumental parameters of the determination were investigated. The electrode has been shown to be suitable for the determination of Cu(II) in the range 8 μg L?1 to 30 mg L?1 (with deposition times ranging from 30 s to 10 min) with a relative standard deviation of 2.2% (at the 0.5 mg L?1 level) and a limit of detection of 8 μg L?1 Cu(II) for 10 min of accumulation (at a S/N ratio of 5). The electrode was, finally, applied to the determination of copper in tap‐water, pharmaceutical tablets and bovine serum with recoveries of 97.4, 94.9 and 93.4%, respectively  相似文献   

14.
Differential-pulse anodic stripping voltammetry at a mercury microelectrode is applied to determine labile and total zinc, cadmium, lead and copper in samples of rain and sea water. The low ohmic drop associated with microelectrodes permits reliable measurements in rain water without addition of supporting electrolyte. The values found in a typical sample were 0.95 μg l?1 Cu, 0.38 μg l?1 Pb, 0.01 μg l?1 Cd and 0.95 μg l?1 Zn, with relative standard deviations in the range 4–18%. The small effects of organic matter at microelectrodes, compared with those at a hanging mercury drop electrode, allow sensitive and reliable measurements of labile metals in surface sea water. Total metal concentrations are determined after acidification to pH 1.5 with hydrochloric acid. The results are compared with those obtained with atomic absorption spectrometry and with differential-pulse anodic stripping voltammetry at conventional mercury electrodes. Satisfactory results were obtained for a reference sea water.  相似文献   

15.
In this article a sensitive differential pulse stripping voltammetry technique on Nafion‐coated bismuth‐film electrode (NCBFE) was studied for the simultaneous determination of zinc, cadmium, and lead ions in blood samples at ultra trace levels. The measurement results were in excellent agreement with those obtained from atomic absorption spectroscopy. Various operational parameters were investigated and discussed in terms of their effect on the measurement signals. Under optimal conditions, calibration curves for the simultaneous determination of zinc, cadmium, and lead ions were achieved, based on three times the standard deviation of the baseline, the limits of detection were 0.09 μg L?1 for Cd(II), 0.13 μg L?1 for Pb(II), and 0.97 μg L?1 for Zn(II) respectively.  相似文献   

16.
Chemical sensors relying on graphene-based materials have been widely used for electrochemical determination of metal ions and have demonstrated excellent signal amplification. This study reports an electrochemically reduced graphene oxide (ERGO)/mercury film (HgF) nanocomposite-modified pencil graphite electrode (PGE) prepared through successive electrochemical reduction of graphene oxide (GO) sheets and an in situ plated HgF. The ERGO-PG-HgFE, in combination with dimethylglyoxime (DMG) and square-wave adsorptive cathodic stripping voltammetry (SW-AdCSV), was evaluated for the determination of Ni2+ in tap and natural river water samples. A single-step electrode pre-concentration approach was employed for the in situ Hg-film electroplating, metal-chelate complex formation, and non-electrolytic adsorption at –0.7 V. The current response due to nickel-dimethylglyoxime [Ni(II)-DMG2] complex reduction was studied as a function of experimental paratmeters including the accumulation potential, accumulation time, rotation speed, frequency and amplitude, and carefully optimized for the determination of Ni2+ at low concentration levels (μg?L?1) in pH 9.4 of 0.1 M NH3–NH4Cl buffer. The reduction peak currents were linear with the Ni2+ concentration between 2 and 16?μg?L?1. The limits of detection and quantitation were 0.120?±?0.002?µg?L?1 and 0.401?±?0.007?µg?L?1 respectively, for the determination of Ni2+ at an accumulation time of 120?s. The ERGO-PG-HgFE further demonstrated a highly selective stripping response toward Ni2+ determination compared to Co2+. The electrode was found to be sufficiently sensitive to determine metal ions in water samples at 0.1?µg?L?1, well below the World Health Organization standards.  相似文献   

17.
The new cyclic renewable mercury film silver based electrode (Hg(Ag)FE), applied for the determination of uranium(VI) traces using differential pulse adsorptive cathodic stripping voltammetry (DP AdCSV) is presented. The Hg(Ag)FE electrode with a surface area adjustable from 1.1 to 12 mm2 is characterized by very good surface reproducibility (≤2%) and long‐term stability (more than 2 thousand measurement cycles). The mechanical refreshing of mercury film is realized in the simple constructed device, in a time shorter than 1–2 seconds. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 0.4 nM (95 ng L?1) to 250 nM (60 μg L?1) for an accumulation time of tacc=20 s, with correlation coefficient of 0.9996. For a Hg(Ag)FE with a surface area of 2.7 mm2 the detection limit for an accumulation time of 120 s is as low as 12 ng L?1. The repeatability of the method at a concentration level of the analyte as low as 2.4 μg L?1, expressed as RSD is 2.5% (n=7). The proposed method was successfully applied and validated by studying the recovery of U(VI) from spiked river water and sediment samples.  相似文献   

18.
A method for the pesticide DNOC (4,6-Dinitro-o-cresol) quantification using hanging mercury drop electrode (HMDE) and stripping square wave voltammetry (SSWV) optimisation is proposed. As a continuous cathodic current decrease was observed during the experiments, a waiting time, together with solution pH and SWV instrumental variables were optimised by factorial designs. From the two reduction current peaks values, only one was considered as dependent variable in the optimisation process. While the cathodic current peak and standard deviation were used in the waiting time and solution pH optimisation process, the instrumental parameters for SWV were optimised by using only current peak values. With the optimal parameters, a calibration curve from (0.01–0.55) × 10?6 mol L?1 with LOD of 2 × 10?8 mol L?1 was obtained. The proposed method was checked for DNOC quantification in different water samples obtained from Cordoba area and very good results, with recovery values around 102% were observed.  相似文献   

19.
We propose an electrochemical sensor based on applying two successive thin layers from a mixture of multiwalled carbon nanotubes‐ionic liquid crystal and crown ether at glassy carbon electrode surface (GC/(CNTs‐ILC)/Crown). The sensor was used for sensitive determination of neurotransmitters based on effective synergism between its components. The compact conducting surface of (CNTs ‐ ILC) with large surface area allowed the assembling of stable host‐guest inclusion complexes between crown ethers and neurotransmitters. The GC/(CNTs‐ILC)/Crown exhibited excellent electro‐catalytic activity toward the determination of serotonin (ST) in a wide linear dynamic range: 0.005 μmol L?1 to 100 μmol L?1. In the concentration range 0.005 μmol L?1 to 1 μmol L?1, the detection limit is 2.03×10?10 mol L?1 and quantification limit is 6.78×10?10 mol L?1 with correlation coefficient 0.999. The sensor was successfully applied for ST detection in human serum samples with satisfied recovery results. The sensor showed excellent analytical performance for the determination of ST in terms of low detection limit, good sensitivity and reproducibility. Furthermore excellent anti‐interference ability and simultaneous determination of ST in presence of other compounds as ascorbic acid, dopamine and antidepressant drug were achieved.  相似文献   

20.
This paper describes a comparative study of the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in highly saline samples (seawater, hydrothermal fluids, and dialysis concentrates) by ASV using the mercury‐film electrode (MFE) and the bismuth‐film electrode (BiFE) as working electrodes. The features of MFE and BiFE as working electrodes for the single‐run ASV determinations are shown and their performances are compared with that of HMDE under similar conditions. It was observed that the stripping peak of Tl(I) was well separated from Cd(II) and Pb(II) peaks in all the studied saline samples when MFE was used. Because of the severe overlapping of Bi(III) and Cu(II) stripping peaks in the ASV using BiFE, as well as the overlapping of Pb(II) and Tl(I) stripping peaks in the ASV using HMDE, the simultaneous determination of these metals was not possible in highly saline medium using these both working electrodes. The detection limits calculated for the metals using MFE and BiFE (deposition time of 60 s) were between 0.043 and 0.070 μg L?1 for Cd(II), between 0.060 and 0.10 μg L?1 for Pb(II) and between 0.70 and 8.12 μg L?1 for Tl(I) in the saline samples studied. The detection limits calculated for Cu(II) using the MFE were 0.15 and 0.50 μg L?1 in seawater/hydrothermal fluid and dialysis concentrate samples, respectively. The methods were applied to the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in samples of seawater, hydrothermal fluids and dialysis concentrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号