首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new Keggin templated supramolecular compounds, [Zn2(H2biim)5(SiM12O40)] · 4H2O [M = W ( 1 ), Mo ( 2 )] (H2biim = 2, 2′‐biimidazole), were synthesized under hydrothermal conditions by using the ligand 2, 2′‐biimidazole. They were characterized by single‐crystal X‐ray diffraction, elemental analyses, IR and photoluminescence spectroscopy as well as cyclic voltammetry. The two isostructural compounds are constructed by two discrete supramolecular moieties: the inorganic chains consist of Keggin anions and metal‐organic chains constructed by [Zn2(H2biim)5]4+ subunits. In the dinuclear [Zn2(H2biim)5]4+ subunit, the H2biim ligands exhibit a dual role, chelating and linking. The metal‐organic chains further construct a 3D supramolecular framework with channels, in which the Keggin‐based inorganic chains are accommodated. The electrochemical behaviors of compounds 1 and 2 bulk‐modified carbon paste electrodes ( 1 ‐CPE, 2 ‐CPE) were studied.  相似文献   

2.
An inorganic‐organic hybrid solid (H6/5bppy)5[P2W18O62]·4.5H2O ( 1 ) (bppy = 4‐(5‐(4‐bromophenyl)pyridin‐2‐yl)pyridine) was hydrothermally synthesized by using pre‐constructed Wells‐Dawson type salt α‐K6P2W18O62·15H2O as inorganic moiety. The crystal structure keeps integrated and steady under the interactions together of aryl packing, hydrogen bonding and halogen bonding. X‐ray single crystal structure analysis reveals that compound 1 contains cavities with the sizes of about 6 × 8Å, in which H2O molecules are captured. The hybrid was used as a solid bulk modifier to fabricate a three‐dimensional bulk‐modified carbon paste electrode ( 1 ‐CPE) by direct mixing. The electrochemical and electrocatalytic behavior of the 1 ‐CPE has been studied in detail. The results exhibit that the redox ability of the Wells‐Dawson polyanions can be maintained in the hybrid solid, which has a good electrocatalytic activity toward the reduction of bromate and hydrogen peroxide. A hydrodynamic voltammetric experiment was performed to characterize the electrode as an amperometric sensor for the determination of hydrogen peroxide. The 1 ‐CPE showed long‐term stability and excellent reproducibility of surface renewal.  相似文献   

3.
In the present study, a novel mixture consisting of N,N′‐bis(salicylidene)‐1,2‐phenylenediamino cobalt (CoSalophen, CoSal) complex and (n‐butyl)4SiW12O40 (SiW12), have been used to chemically modify a carbon paste electrode (CPE) for sensitive determination of cysteine (CySH). The electrocatalytic effect of the newly developed modified CPE towards oxidation of CySH was evaluated by comparing cyclic and differential pulse voltammograms in the presence of cysteine at bare, CoSal, SiW12 and CoSal/SiW12 modified CPE. The differential pulse voltammetry method was applied as a sensitive method for quantitative detection of CySH trace amounts, the experimental conditions being optimized in order to evaluate the best analytical parameters of the sensor. Reproducibility and stability studies were also performed and the sensor was applied for the determination of CySH in a pharmaceutical sample and in human blood serum and urine samples.  相似文献   

4.
The solid hybrid material (H3/4pbpy)4[PMo12O40]·1.25H2O (1) (pbpy=5-phenyl-2-(4-pyridinyl)pyridine) has been prepared and characterized. A structural feature of compound 1 is that the polyoxometalate anions exhibit a one-dimensional inorganic double chain-like structure via weak interactions of O…O. The organic moiety exhibits regular packing with offset aromatic-aromatic interactions between the pbpys, leading to a compact supramolecular framework structure to accommodate the inorganic chains. Compound 1 was employed to fabricate the three-dimensional bulk-modified carbon paste electrode (1-CPE) to research on its electrochemistry properties. The results indicate that 1 retained Keggin molybdate anion electrocatalytic activities toward the reduction of chlorate, hydrogen peroxide and nitrite.  相似文献   

5.
The chemical study of Sechium mexicanum roots led to the isolation of the two new saponins {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (1) and {3‐O‐β‐D ‐glucopyranosyl (1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,16α,23‐tetrahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐[β‐D ‐apiosyl‐(1 → 3)]‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (2), together with the known compounds {3‐O‐β‐D ‐glucopyranosyl‐(1 → 3)‐β‐D ‐glucopyranosyl‐2β,3β,6β,16α,23‐pentahydroxyolean‐12‐en‐28‐oic acid 28‐O‐α‐L ‐rhamnopyranosyl‐(1 → 3)‐β‐D ‐xylopyranosyl‐(1 → 4)‐α‐L ‐rhamnopyranosyl‐(1 → 2)‐α‐L ‐arabinopyranoside} (3), tacacosides A1 (4) and B3 (5). The structures of saponins 1 and 2 were elucidated using a combination of 1H and 13C 1D‐NMR, COSY, TOCSY, gHMBC and gHSQC 2D‐NMR, and FABMS of the natural compounds and their peracetylated derivates, as well as by chemical degradation. Compounds 1–3 are the first examples of saponins containing polygalacic and 16‐hydroxyprotobasic acids found in the genus Sechium, while 4 and 5, which had been characterized partially by NMR, are now characterized in detail. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Two new transition‐metal (TM) complex salts of the Wells‐Dawson polyanion: [Cu(2,2′‐bpy)3]2[Cu(2,2′‐bpy)2]2[P2W18O62] ( 1 ) and [2,2′‐bpy]8[Fe(2,2′‐bpy)3]8[P2W18O62]4·9H2O ( 2 ) (2,2′‐bpy = 2,2′‐bipyridine), have been synthesized under hydrothermal conditions by using pre‐prepared α‐K6P2W18O62·15H2O as a precursor. Crystal data for compound 1 : monoclinic, space group C2/c, a = 20.722(4) Å, b = 21.988(4) Å, c = 29.614(6) Å, β = 104.32(3)°, V = 13074(5) Å3, Z = 4; for compound 2 : triclinic, space group , a = 15.804(3) Å, b = 27.519(6) Å, c = 27.566(6) Å, α = 72.71(3)°, β = 89.94(3)°, γ = 89.90(3)°, V = 11447(5) Å3, Z = 1. Compounds 1 and 2 have been characterized by single‐crystal X‐ray diffraction, IR spectra, thermogravimetric analysis, XPS spectra and cyclic voltammetry. The two compounds were used as solid bulk modifiers to fabricate bulk‐modified carbon paste electrodes ( 1 ‐, 2 ‐CPE). The electrochemical behaviors of 1 ‐, 2 ‐CPE have been studied in detail. The redox behavior of the parent Wells‐Dawson type cluster was maintained completely in compounds 1 and 2 .  相似文献   

7.
The ten new acylated presenegenin (=(2β,3β,4α)‐2,3,27‐trihydroxyolean‐12‐ene‐23,28‐dioic acid) glycosides 1 – 10 have been isolated by successive MPLC from the roots of Polygala myrtifolia L. as five inseparable mixtures of the trans‐ and cis‐4‐methoxycinnamoyl derivatives, i.e., myrtifoliosides A1/A2 ( 1 / 2 ), B1/B2 ( 3 / 4 ), C1/C2 ( 5 / 6 ), D1/D2 ( 7 / 8 ), and E1/E2 ( 9 / 10 ). Their structures were elucidated mainly by extensive spectroscopic experiments, including 2D NMR techniques, as 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{Oβ‐D ‐galactopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[D ‐apio‐β‐D ‐furanosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[α‐L ‐arabinopyranosyl‐(1→3)]‐4‐O‐(trans‐4methoxycinnamoyl)‐β‐D ‐fucopyranosyl} ester ( 1 ) and its cis‐isomer 2 , 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{Oβ‐D ‐galactopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[D ‐apio‐β‐D ‐furanosyl‐(1→3)]‐α‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐(trans‐4methoxycinnamoyl)‐β‐D ‐fucopyranosyl} ester ( 3 ) and its cis‐isomer 4 , 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{Oβ‐D ‐galactopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐(trans‐4methoxycinnamoyl)‐β‐D ‐fucopyranosyl} ester ( 5 ) and its cis‐isomer 6 , 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{O‐D ‐apio‐β‐D ‐furanosyl‐(1→3)‐O‐[β‐D ‐xylopyranosyl‐(1→4)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)4‐O‐(trans‐4methoxycinnamoyl)‐β‐D ‐fucopyranosyl} ester ( 7 ) and its cis‐isomer 8 , and 3‐O‐(β‐D ‐glucopyranosyl)presenegenin 28‐{Oα‐L ‐arabinopyranosyl‐(1→3)‐O‐[β‐D ‐xylopyranosyl‐(1→4)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐(trans‐4 methoxycinnamoyl)‐β‐D ‐fucopyranosyl} ester ( 9 ) and its cis‐isomer 10 .  相似文献   

8.
Two new inorganic–organic hybrid supramolecular compounds based on imidazolium and POMs formulated as (H2bbi)2[Mo8O26] (1) and (H2bbi)2[SiW12O40]·2H2O (2) [bbi = 1,1′-(1,4-butanediyl)bis(imidazole)] have been prepared under hydrothermal conditions and characterized by elemental analyses, IR and single-crystal X-ray diffraction analyses. The two compounds consist of protonated bbis together with POMs. [Mo8O26]4? and [SiW12O40]4? are linked through H2bbi into a three-dimensional (3D) network via hydrogen bonds, respectively. Compound 1 is the first example of 3D two-fold interpenetrating hydrogen bond-supported supramolecular assembly from octamolybdate one-dimensional (1D) chain and imidazolium. The fascinating structural feature of compound 2 is that the anions and the protonated bbi ligands formed a 3D (4, 8) supramolecular network by hydrogen bonds. Compound 2 has been used as a solid bulk-modifier to fabricate three-dimensional bulk-modified carbon paste electrode (CPE) by direct mixing. The electrochemical behavior and electrocatalysis of compound 2 modified CPE (2-CPE) have been studied.  相似文献   

9.
The novel nanoparticles, [Ru(bpy)3]2SiW12O40?2 H2O, were firstly synthesized and characterized by elemental analysis, IR, and TEM. The nanoparticles were used to fabricate a chemically modified carbon paste electrode (CPE) by dispersing nanoparticles and graphite powder in silicone grease. Thus‐prepared CPE shows bifunctional electrocatalytic activities towards the reduction of nitrite and the oxidation of oxalate, and exhibits sensitive electrochemiluminescence (ECL). The modified CPE has high stability and excellent repeatability owing to the insolubility and homogeneous disperses of the nanoparticles. The nanoparticles modified CPE may open a way to be used as solid electrochemical sensor for both ECL and electrocatalysis in practical applications.  相似文献   

10.
Two new oleanolic acid‐type triterpenoid saponins, raddeanosides R22 and R23 ( 1 and 2 , resp.), together with four known saponins were isolated from the rhizome of Anemone raddeana Regel. The structures of the new compounds were elucidated as oleanolic acid 3‐Oβ‐D ‐glucopyranosyl(1→2)[β‐D ‐glucopyranosyl(1→4)]‐α‐L ‐arabinopyranoside ( 1 ) and oleanolic acid 3‐Oα‐L ‐arabinopyranosyl(1→3)‐α‐L ‐rhamnopyranosyl(1→2)[β‐D ‐glucopyranosyl(1→4)]‐α‐L ‐arabinopyranoside ( 2 ). The four known compounds were identified as oleanolic acid 3‐Oα‐L ‐arabinopyranoside ( 3 ), oleanolic acid 3‐Oβ‐D ‐glucopyranosyl(1→4)‐α‐L ‐arabinopyranoside ( 4 ), hederasaponin B ( 5 ), and hederacholchiside E ( 6 ) on the basis of chemical and spectral evidences. Compound 4 is reported for the first time from the Anemone genus, while the other three known compounds have been already found in this plant.  相似文献   

11.
Eight new acylated preatroxigenin saponins 1 – 8 were isolated as four inseparable mixtures of the trans‐ and cis‐4‐methoxycinnamoyl derivatives, atroximasaponins A1/A2 ( 1 / 2 ), B1/B2 ( 3 / 4 ), C1/C2 ( 5 / 6 ) and D1/D2 ( 7 / 8 ) from the roots of Atroxima congolana. These compounds are the first examples of triterpene saponins containing preatroxigenin (=(2β,3β,4α,22β)‐2,3,22,27‐tetrahydroxyolean‐12‐ene‐23,28‐dioic acid as aglycone. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR studies and FAB‐MS as 3‐O(β‐D ‐glucopyranosyl)preatroxigenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[Oβ‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐(trans‐4‐methoxycinnamoyl)‐β‐D ‐fucopyranoyl} ester ( 1 ) and its cis‐isomer 2 , 3‐O‐(β‐D ‐glucopyranosyl)preatroxigenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→ 2)‐O‐[O‐6‐O‐acetyl‐β‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐(trans‐ 4‐methoxycinnamoyl)‐β‐D ‐fucopyranosyl} ester ( 3 ) and its cis‐isomer 4 , 3‐O‐(β‐D ‐glucopyranosyl)preatroxigenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[O‐6‐ O‐acetyl‐β‐D ‐glucopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐(trans‐4‐methoxycinnamoyl)‐β‐D ‐fucopyranoyl} ester ( 5 ) and its cis‐isomer 6 , 3‐O‐(β‐D ‐glucopyranosyl)preatroxigenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐O‐[β‐D ‐apiofuranosyl‐(1→3)]‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[Oβ‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐(trans‐4‐methoxycinnamoyl)‐β‐D ‐fucopyranosyl ester ( 7 ) and its cis‐isomer 8 .  相似文献   

12.
Starting from methyl 2,3‐O‐isopropylidene‐α‐D ‐mannofuranoside ( 5 ), methyl 6‐O‐benzyl‐2,3‐O‐isopropylidene‐α‐D ‐lyxo‐hexofuranosid‐5‐ulose ( 12 ) was prepared in three steps. The addition reaction of dimethyl phosphonate to 12 , followed by deoxygenation of 5‐OH group, provided the 5‐deoxy‐5‐dimethoxyphosphinyl‐α‐D ‐mannofuranoside derivative 15a and the β‐L ‐gulofuranoside isomer 15b . Reduction of 15a and 15b with sodium dihydrobis(2‐methoxyethoxy)aluminate, followed by the action of HCl and then H2O2, afforded the D ‐mannopyranose ( 17 ) and L ‐gulopyranose analog 21 , each having a phosphinyl group in the hemiacetal ring. These were converted to the corresponding 1,2,3,4,6‐penta‐O‐acetyl‐5‐methoxyphosphinyl derivatives 19 and 23 , respectively, structures and conformations (4C1 or 1C4, resp.) of which were established by 1H‐NMR spectroscopy.  相似文献   

13.
The crystal structure of the non‐ribosomal lipoundecapeptide tensin from Pseudomonas fluorescens has been solved as an ethyl acetate/bis‐water solvate (tensin ethyl acetate dihydrate, C67H115N12O20·C4H8O2·2H2O) to a resolution of 0.8 Å. The primary structure of tensin is β‐hydroxydecanoyl‐d ‐Leu‐d ‐Asp‐d ‐allo‐Thr‐d ‐Leu‐d ‐Leu‐d ‐Ser‐l ‐Leu‐d ‐Gln‐l ‐Leu‐l ‐Ile‐l ‐Glu. The peptide is a lactone linking the Thr3 Oγ atom to the C‐terminal C atom. The stereochemistry of the β‐hydroxy acid has been shown to be S. The peptide shows structural resemblance to the non‐ribosomal cyclic lipopeptide fengycin from Bacillus subtilis. The structure of tensin is essentially helical (310‐helix), with the cyclic peptide wrapping around a hydrogen‐bonded water molecule. The lipopeptide is amphipathic in good agreement with its function as a biosurfactant.  相似文献   

14.
The introduction of an extended bridging bis(triazole) ligand, that is, 4,4′‐bis(1,2,4‐triazol‐1‐ ylmethyl)biphenyl (BBPTZ), into the hydrothermal reaction system containing transition metal ions and Keggin‐type polyoxometalates (POMs) led to the isolation of three new organic–inorganic hybrid entangled coordination networks, [CuI2CuII(BBPTZ)6][SiW12O40]?12 H2O ( 1 ), [Ni(BBPTZ)2(H2O)][H2SiW12O40]?11 H2O ( 2 ), and [Ni2(BBPTZ)4(H2O)2][SiW12O40]?3 H2O ( 3 ). All three compounds were characterized by elemental analysis, IR spectroscopy, TG analysis, powder X‐ray diffraction, and single‐crystal X‐ray diffraction. Compound 1 contains a 2‐D POM‐based metal–organic layer entangled with 1‐D ladder‐like metal–organic chains. The adjacent 2‐D networks are parallel to each other, further stacking into a 3‐D supramolecular framework with 1‐D channels. Compound 2 exhibits a 1‐D cantilever‐type loop‐containing chain. The Keggin‐type POMs act as the cantilever groups, leading to the adjacent catilever‐type chains interwaving together to form a 3‐D supramolecular open framework with two types of channels. Compound 3 possesses a 3‐D open framework based on 2‐D metal–organic undulated layer and Keggin‐type POM clusters. Three sets of such frameworks further interpenetrate with each other to form an interesting three‐fold interpenetrating framework. The photocatalytic activities of compounds 1–3 for the decomposition of methylene blue (MB) under UV light have been investigated.  相似文献   

15.
The isomorphous structures of the title molecules, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐3‐iodo‐1H‐pyrazolo‐[3,4‐d]pyrimidine, (I), C10H12IN5O3, and 4‐amino‐3‐bromo‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐1H‐pyrazolo[3,4‐d]­pyrimidine, (II), C10H12BrN5O3, have been determined. The sugar puckering of both compounds is C1′‐endo (1′E). The N‐­glycosidic bond torsion angle χ1 is in the high‐anti range [?73.2 (4)° for (I) and ?74.1 (4)° for (II)] and the crystal structure is stabilized by hydrogen bonds.  相似文献   

16.
The four new acylated triterpene saponins 1 – 4 , isolated as two pairs of isomers and named libericosides A1/A2 and B1/B2, one pair of isomers 5 / 6 , the (Z)‐isomer libericoside C2 ( 5 ) being new, one new sucrose ester, atroximoside ( 7 ), and eight known compounds were isolated from the roots of Atroxima liberica by repeated MPLC and VLC on normal and reversed‐phase silica gel. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR studies (1H‐ and 13C‐NMR, DEPT, COSY, TOCSY, NOESY, HSQC, and HMBC) and mass spectrometry as 3‐Oβ‐D ‐glucopyranosylpresenegenin 28‐{Oα‐L ‐arabinopyranosyl‐(1→3)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 1 ) and its (Z)‐isomer 2 , 3‐Oβ‐D ‐glucopyranosylpresenegenin 28‐{Oα‐L ‐arabinopyranosyl‐(1→4)‐Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[O‐β‐D ‐xylopyranosyl‐(1→3)‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐[(E)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 3 ) and its (Z)‐isomer 4 , 3‐Oβ‐D ‐glucopyranosylpresenegenin 28‐{Oβ‐D ‐xylopyranosyl‐(1→4)‐Oα‐L ‐rhamnopyranosyl‐(1→2)‐O‐[6‐O‐acetyl‐β‐D ‐glucopyranosyl‐(1→3)]‐4‐O‐[(Z)‐3,4‐dimethoxycinnamoyl]‐β‐D ‐fucopyranosyl} ester ( 5 ), and 3‐O‐[(Z)‐feruloyl]‐β‐D ‐fructofuranosyl α‐D ‐glucopyranoside ( 7 ). Compounds 1 – 6 and the known saponins 8 / 9 were evaluated against the human colon cancer cells HCT 116 and HT‐29 and showed moderate to weak cytotoxicity.  相似文献   

17.
A kind of inorganic‐organic hybrid 18‐molybdodiphosphate nanoparticles ([(C4H9)4N]6P2Mo18Q62·4H2O) was firstly used as a bulk‐modifier to fabricate a three‐dimensional chemically modified carbon paste electrode (CPE) by direct mixing. The electrochemical behavior of the solid nanoparticles dispersed in the CPE in acidic aqueous solution was characterized by cyclic and square‐wave voltammetry. The hybrid 18‐molybdodiphosphate nanoparticles bulk‐modified CPE (MNP‐CPE) displayed a high electrocatalytic activity towards the reduction of nitrite, bromate and hydrogen peroxide. The remarkable advantages of the MNP‐CPE over the traditional polyoxometalates‐modified electrodes are their excellent reproducibility of surface‐renewal and high stability owing to the insolubility of the hybrid 18‐molybdodiphosphate nanoparticles.  相似文献   

18.
The crystal structure of methyl α‐d ‐mannopyranosyl‐(1→3)‐2‐O‐acetyl‐β‐d ‐mannopyranoside monohydrate, C15H26O12·H2O, ( II ), has been determined and the structural parameters for its constituent α‐d ‐mannopyranosyl residue compared with those for methyl α‐d ‐mannopyranoside. Mono‐O‐acetylation appears to promote the crystallization of ( II ), inferred from the difficulty in crystallizing methyl α‐d ‐mannopyranosyl‐(1→3)‐β‐d ‐mannopyranoside despite repeated attempts. The conformational properties of the O‐acetyl side chain in ( II ) are similar to those observed in recent studies of peracetylated mannose‐containing oligosaccharides, having a preferred geometry in which the C2—H2 bond eclipses the C=O bond of the acetyl group. The C2—O2 bond in ( II ) elongates by ~0.02 Å upon O‐acetylation. The phi (?) and psi (ψ) torsion angles that dictate the conformation of the internal O‐glycosidic linkage in ( II ) are similar to those determined recently in aqueous solution by NMR spectroscopy for unacetylated ( II ) using the statistical program MA′AT, with a greater disparity found for ψ (Δ = ~16°) than for ? (Δ = ~6°).  相似文献   

19.
Two novel supramolecular assemblies of organic bicapped Keggin polyoxometalates (pbpy)8H3[PW12O40]·2H2O (1) and (pbpy)4H[PMo12O40(VO)] (2) (pbpy=5-phenyl-2-(4-pyridinyl)pyridine) have been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Crystallographic data for compound (1), C128H103N16O42PW12, triclinic, space group : a=13.4759(8) Å, b=14.6395(11) Å, c=16.5743(10) Å, α=95.764(2)°, β=102.166(2)°, γ=92.9870(10)°, Z=1, V=3171.1(4) Å3; for compound (2), C64H49N8O41PMo12V, triclinic, space group : a=11.5377(11) Å, b=12.7552(8) Å, c=14.9599(10) Å, α=72.270(4)°, β=88.916(2)°, γ=67.865(4)°, Z=1, V=1931.0(3) Å3. X-ray analyses show that both 1 and 2 represent rare organic bicapped Keggin structures and are supported by supramolecular interactions to extend into a 3D framework. In particular, the unusual structure feature of compound 2 contains a simultaneously organic and inorganic capped structure.  相似文献   

20.
Four new saponins, yemuosides YM17–YM20 ( 1 – 4 , resp.), were isolated from the rattan of Stauntonia chinensis DC. (Lardizabalaceae) along with a known saponin, nipponoside D ( 5 ). Their structures were elucidated by spectroscopic analysis and chemical evidence as 20,30‐dihydroxy‐29‐noroleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 1 ), 20,29‐dihydroxy‐30‐noroleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 2 ), 29‐hydroxy‐30‐norolean‐20(21)‐enolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 3 ), 29‐hydroxyoleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 4 ), and 23,29‐dihydroxyoleanolic acid 28‐Oα‐L ‐rhamnopyranosyl‐(1→4)‐β‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl ester ( 5 ). Yemuoside YM17–YM19 ( 1 – 3 , resp.) contain novel unusual nortriterpene aglycones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号