首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 292 毫秒
1.
Scanning electrochemical microscopy (SECM) is an emerging electroanalytical sensing technique, used to investigate the electrochemical properties of the sample by ultra‐micro‐electrode(UME) scanning probe. UME signal usually is the current, which depends not only on the properties of the evaluated system but also on UME characteristics such as geometry. Variations of UME geometry can decrease accuracy of the measurement, and then correct analysis of the SECM data becomes almost impossible. In the present work, we studied the precision of measurements with three different the most frequent types of defected UME's ((i) recessed‐UME, (ii) outwarded‐UME, (iii) cone‐UME). Measurement results were compared with that obtained with not defected standard‐plane‐UME. Computational experiment was performed with SECM model using diffusion equations with non‐rectangular border conditions to calculate estimated currents for these three types of defected UMEs and to compare them with that for standard‐plane‐UME. In order to test the correctness of the model, computations for recessed‐UME model were compared with data of real‐recessed‐UME experiment.  相似文献   

2.
The integration of scanning electrochemical ultra-micro-electrode (UME) with atomic force microscope cantilever probe have been achieved by using a homemade photolithography system. A gold-film-coated AFM cantilever was insulated with photo resist coating and a pointed end of the AFM probe was opened by illuminating with maskless arbitrary optical micro-pattern generator. To realize precise control of probe sample distance constantly, the resulting scanning electrochemical microscopy (SECM)-AFM probe was operated using a dynamic force microscopy (DFM) technique with magnetic field excitation. From a steady-state voltammetric experiment, the effective electrode diameters of the probes thus prepared were estimated to be from 0.050 to 6.2 microm. The capability of this SECM-AFM probe have been tested using gold comb in the presence of Fe(CN)(6)(3-). The simultaneous imaging of the topography and electrochemical activity of the strip electrode was successfully obtained. We also used the SECM-AFM to examine in situ topography and enzymatic activity measurement. Comparison of topography and oxidation current profiles above enzyme-modified electrode showed active parts distribution of biosensor surface.  相似文献   

3.
Scanning electrochemical microscopy (SECM) is used to form local deposits of different Prussian blue analogs on macroscopic surfaces of gold and glassy carbon. Dissolution of Co and Ni sacrificial ultramicroelectrodes (UMEs) generates divalent cations in the gap between the UME and the macroscopic specimen electrode. Co2+ or Ni2+ precipitate with [Fe(CN)6]4– formed by reduction of [Fe(CN)6]3– at the macroelectrode. By moving the UME while generating Co2+ or Ni2+, lines can be "drawn" with a width of 130 μm. The line width can be adjusted by reagent concentration and translation speed of the UME. Different pulse programs allow the formation of ring-shaped structures. The deposited hexacyanoferrate microstructures show catalytic activity for the reduction of Fe3+ which was imaged in the feedback and generation-collection modes of the SECM. Electronic Publication  相似文献   

4.
陈星星 《电化学》2018,24(5):497
扫描电化学显微镜是一种在检测样品表面物理形貌的同时能提供丰富的电化学信息的扫描探针技术,由于超微电极的引入,它可以高时空分辨率地探究各类样品的物理形貌和电化学性能之间的构效关系. 随着现代纳米科技的不断发展,扫描探针的尺寸也逐渐从亚微米发展到纳米级别. 与此同时,高效优选各类氧反应和氢反应电催化材料,明晰其电化学反应过程和性能是二十一世纪绿色新能源转换存储系统(如可再生燃料电池、金属空气电池等)的重要研究方向. 本文首先概括了可应用于扫描电化学显微镜的纳米级扫描探针的制备及发展,之后着重介绍了近四年纳米尺度扫描电化学显微镜在电催化氧反应和氢反应研究中的一些最新研究进展. 最后以点窥面,对未来纳米尺度扫描电化学显微镜的未来发展趋势作了展望.  相似文献   

5.
A robust ultramicroelectrode (UME) probe is described for the amperometric determination of K+ ions in aqueous solution. The approach is based on ion-transfer voltammetry at the interface between two immiscible electrolyte solutions (ITIES), with a liquid ¦ liquid interface formed between a 1,2-dichloroethane solution, containing dibenzo-18-crown-6, in a glass capillary, which is placed in an aqueous K+ salt solution of interest (KCl in this study). The ITIES is externally polarised by applying a potential between silver electrodes in each phase. The UME probe has an inlaid disk geometry, making conventional ultramicroelectrode and scanning electrochemical microscopy (SECM) mass transport models applicable. Limiting current measurements of K+ in aqueous solution show a linear dependence on KCl concentration between 1 × 104 and 2.5 × 103 mol dm3. The K+ microprobe is shown to be particularly suitable for use in SECM, for both approach curve and imaging applications.  相似文献   

6.
In this study, the effects of forced convection on scanning electrochemical microscopy (SECM) experiments in feedback mode using ferrocenemethanol as redox mediator are presented. Forced convection, which enhances the mass transfer inside the system, was generated via an electrical high precision stirrer integrated into the SECM setup. A thin‐film interdigitated array electrode serving as model substrate was investigated with probe scan curves in z‐direction and SECM imaging in constant height mode utilizing ultramicroelectrodes (UME) with diameters (dprobe) of 25 μm and 12.5 μm. It was found that forced convection increased the overall current during SECM imaging without distorting distinctive features of the imaged structure when working with a 25 μm UME at substrate‐to‐tip distances of 14 μm and 11 μm. Furthermore, the electrochemical contrast was improved under hydrodynamic conditions for a substrate‐to‐tip distance of 11 μm and scan rates of 5 μm s?1, 10 μm s?1, 20 μm s?1 and 40 μm s?1. When further decreasing the gap between the UME and the substrate to 9 μm almost no effects of the forced convection were observed. Consequently, for a 25 μm UME, forced convection led to higher currents and improved performance during SECM experiments in feedback mode at substrate‐to‐tip distances of 14 μm and 11 μm, whereas no effects were observed for a 12.5 μm UME at a distance of 8 μm.  相似文献   

7.
A Prussian Blue (PB) film modified disk ultramicroelectrode (UME) was fabricated by electrochemical deposition technique on a Pt-disk UME. The electrocatalytical reductions of hydrogen peroxide derived from glucose oxidase (GOD) on this modified UME were investigated. The enzymatic biochemical reactivity was imaged by scanning electrochemical microscopy (SECM) utilizing the PB film modified UME. It is evident that sensitivity and spatial resolution for hydrogen peroxide measurement were improved obviously. SECM images obtained clearly revealed the concentration profile of the reaction products around the enzymes. The PB film modified microelectrode is in the nature of simple preparation, high catalytic activity on hydrogen peroxide and substrate selectivity for SECM etc.  相似文献   

8.
A new method has been developed for measuring local adsorption rates of metal ions at interfaces based on scanning electrochemical microscopy (SECM). The technique is illustrated with the example of Ag+ binding at Langmuir phospholipid monolayers formed at the water/air interface. Specifically, an inverted 25 microm diameter silver disc ultramicroelectrode (UME) was positioned in the subphase of a Langmuir trough, close to a dipalmitoyl phosphatidic acid (DPPA) monolayer, and used to generate Ag+ via Ag electro-oxidation. The method involved measuring the transient current-time response at the UME when the electrode was switched to a potential to electrogenerate Ag+. Since the Ag+/Ag couple is reversible, the response is highly sensitive to local mass transfer of Ag+ away from the electrode, which, in turn, is governed by the interaction of Ag+ with the monolayer. The methodology has been used to determine the influence of surface pressure on the adsorption of Ag+ ions at a phospholipid (dipalmitoyl phosphatidic acid) Langmuir monolayer. It is shown that the capacity for metal ion adsorption at the monolayer increased as the density of surface adsorption sites increased (by increasing the surface pressure). A model for mass transport and adsorption in this geometry has been developed to explain and characterise the adsorption process.  相似文献   

9.
We investigated the electrochemical detection of single iridium oxide nanoparticle (IrO(x) NP) collisions at the NaBH(4)-treated Pt ultramicroelectrode (UME) in a scanning electrochemical microscope (SECM) over an insulating surface. The NP collision events were monitored by observing the electrocatalytic water oxidation reaction at potentials where it does not take place on the Pt UME. These collisions occurred stochastically, resulting in a transient response ("blip") for each collision. The frequency of the collisions is proportional to the flux of NPs to the UME tip, and thus equivalent to the SECM current. A plot of collision frequency versus distance followed the theoretical approach curve behavior for negative feedback for a high concentration of mediator, demonstrating that the collisions were diffusion-controlled and that single-particle measurements of mass transport are equivalent to ensemble ones. When the SECM was operated with a Pt substrate at the same potential as the tip, the behavior followed that expected of the shielding mode. These studies and additional ones result in a model where the IrO(x) NP collision on the Pt UME is adsorptive, with oxygen produced by the catalyzed water oxidation causing a current decay. This results in a blip current response, with the current decay diminished in the presence of the oxygen scavenger, sulfite ion. Random walk and theoretical bulk simulations agreed with the proposed mechanism of IrO(x) NP collision, adsorption, and subsequent deactivation.  相似文献   

10.
Laser scanning confocal microscopy (LSCM) coupled to a constant volume flow-pressure measuring system is introduced as a new technique for the quantitative measurement of fluid flow across porous materials. Such processes are ubiquitous from the life sciences to materials science and the methodology herein could find widespread application. The methodology has been applied to the detection of fluid flow through human dentine, in-vitro, and in the assessment of occlusion actives. Dentine is a calcareous material sandwiched between the pulp and enamel in the tooth structure that contains tubules which traverse dentine in the pulp to enamel direction. The tubules become patent during enamel erosion or gum recession, leading to dentinal hypersensitivity. Understanding the nature of fluid flow is important, as a pressure gradient exists across dentine in-vivo and this has implications for the development of suitable treatments. The methodology described herein firstly allows a ready assessment of the general efficacy of treatments via hydraulic permeability measurements. Second, LSCM images allow the nature of the flow process and the mode of action of the treatments to be revealed at high spatial resolution. For the particular case of dentine, we demonstrate how the method allows candidate treatments to be compared and assessed.  相似文献   

11.
Herein, the scanning electrochemical microscopy (SECM) approach is applied to study the formation of thiol-porphyrin self-assembled monolayer (SAMs). Using cyclic voltammetry (CV), the formation process is characterized adopting different probe molecules. The observed phenomena indicate that the formation process is affected by solution properties and the molecular structure of the probe molecules. In K(3)Fe(CN)(6) , the SAMs show a strong electron-transfer (ET) blocking effect on a pure porphyrin-modified electrode. However, addition of metal ions to the porphyrin molecules leads to ET. A consistent tendency is observed throughout the modification process using CV and SECM methods. Furthermore, k(eff) values, the apparent heterogeneous rate constants, obtained for different modification periods affirm the validity of these results. SECM images are used to collect surface information in the course of the modification process when the substrate potential is 0.5 V versus Ag/AgCl. The effect of the substrate potential indicates that the oxidation of the porphyrin molecules is supported by more positive potentials because of the similar bimolecular reaction of the porphyrin ring with positive charge and the probe molecules with negative charge.  相似文献   

12.
A new application of scanning electrochemical microscopy (SECM) to probe the transport of protons through membranes is described. Herein, a probe ultramicroelectrode (UME) is modified with a self‐assembled monolayer (SAM) of 11‐mercaptoundecanoic acid to qualitatively image areas within different pH regions above a track‐etched membrane. The current response of the modified electrode in the presence of potassium hexacyanoferrate as electroactive component is different in acidic and alkaline solutions. Depending on the pH value of the solution, the SAM‐covered electrode exposes either a neutral or a negatively charged insulating monolayer at pH 3 or 7, respectively, which leads to an increase/decrease in the faradaic current due to electrostatic interactions between the neutral/charged surface and the charged redox mediator. Therefore, local pH changes in the close vicinity of a membrane‐like substrate lead to different current responses recorded at the tip electrode when scanning above the surface.  相似文献   

13.
The BEM algorithm developed earlier for steady-state experiments in the scanning electrochemical microscopy (SECM) feedback mode has been expanded to allow for the treatment of more than one independently diffusing species. This allows the treatment of substrate-generation/tip-collection SECM experiments. The simulations revealed the interrelation of sample layout, local kinetics, imaging conditions, and the quality of the obtained SECM images. Resolution in the SECM SG/TC images has been evaluated, and it depends on several factors. For most practical situations, the resolution is limited by the diffusion profiles of the sample. When a dissolved compound is converted at the sample (e.g., oxygen reduction or enzymatic reaction at the sample), the working distance should be significantly larger than in SECM feedback experiments (ca. 3 r(T) for RG = 5) in order to avoid diffusional shielding of the active regions on the sample by the UME body. The resolution ability also depends on the kinetics of the active regions. The best resolution can be expected if all the active regions cause the same flux. In one simulated example, which might mimic a possible scenario of a low-density protein array, considerable compromises in the resolving power, were noted when the flux from two neighboring spots differs by more than a factor of 2.  相似文献   

14.
This paper describes the use of scanning electrochemical microscopy (SECM) in the tip generation/substrate collection (TG/SC), or feedback, mode and substrate generation/tip collection (SG/TC) mode to measure homogeneous kinetics in the catalytic EC' process. Theoretical analyses of both configurations have been developed numerically to allow the optimal conditions for sensitive kinetic measurements to be determined. This is shown to involve collection efficiency measurements as a function of tip-substrate electrode distance in the case of TG/SC measurements and tip (collector current) images in a plane normal to the substrate electrode for the SG/TC mode. An important consideration for the SECM configuration (particularly for TG/SC and feedback measurements) is that the electroinactive co-reactant may be depleted more significantly than with other electrode geometries, because of cycling of the redox couple in the tip/substrate electrode gap, while the co-reactant can only enter this gap by hindered diffusion. The approaches described are examined through studies of the oxidation of amidopyrine by electrogenerated Fe(CN) in 0.5 mol dm(-3) aqueous KOH solution. A second-order rate constant of 390 ± 80 dm(3) mol(-1) s(-1) is obtained from TG/SC measurements, consistent with SG/TC quantitative imaging measurements. The consistency of the kinetic measurements confirms the validity of the approaches described. The kinetic constant is lower than expected based on previous ultramicroelectrode (UME) studies, and this is attributed to the fact that background currents for the direct heterogeneous oxidation of amidopyrine are more significant with conventional UME measurements, which will tend to enhance the current measured and may therefore lead to an overestimation of kinetic constants. The TG/SC approach, on the other hand, provides a means of making dual-electrode collection efficiency measurements with diffusional feedback of the redox couple, leading to superior voltammetric responses and enabling more accurate kinetic determination.  相似文献   

15.
This work is devoted to the study of the electrochemical grafting of nitrophenyl groups onto platinum ultramicroelectrode (UME). The grafting was made using the electrochemical reduction of nitrophenyldiazonium. Our results demonstrate the possibility to reduce the diazonium onto Pt UME. As consequence the electrochemical reduction leads to the attachment of nitrophenyl groups onto the UME surface. Following that, the modified UME was characterized using electrochemical techniques. In addition, the electrochemical response of the modified UME in the presence of reversible redox couple, ferrocene, has been studied. The main remark is that the steady state current observed at the UME is not affected by the presence of the nitrophenyl layers. Finally, from this last point we demonstrate the possibility to achieve scanning electrochemical microscopy (SECM) using modified platinum UME.  相似文献   

16.
李建平  方成  顾海宁 《化学学报》2006,17(17):1812-1816
采用扫描电化学显微技术在玻碳电极表面沉积出K2Cu[Fe(CN)6]和K2Fe[Fe(CN)6]微阵, 并对所得的微阵结构进行了可视化表征. 铜微电极和镀铁铂微电极阳极化产生金属离子, 然后与玻碳电极(基底电极)上还原产生的[Fe(CN)6]4-在微区生成六氰合铁酸盐沉淀, 操纵探针以跳跃沉积方式可以得到沉淀的点阵结构. 通过改变K3[Fe(CN)6]的浓度和沉积时间可以调整沉淀斑的直径和厚度. 扫描电化学显微镜成像表明微阵结构对多巴胺的氧化和过氧化氢的还原有明显的电催化作用.  相似文献   

17.
The stomatal physiology, chlorophyll distribution and photosynthetic activity of somatic embryo (SE)- and seedling-derived peanut plants grown in vitro (test tube-grown) and extra vitrum (soil-grown) are investigated using scanning electrochemical microscopy (SECM). This SECM imaging is performed in two different feedback modes, corresponding to oxygen evolution and chlorophyll distribution. More specifically, the oxygen evolution profiles of the in vitro leaves indicate important differences in leaf anatomy between the SE- and seedling-derived leaves. On the other hand, the chlorophyll distribution images show individual stomata of size ca. 27 ± 5μm. Further studies on senescing (aged) leaves reveal interesting voltammograms that vary widely over the stomatal complexes and the surrounding tissues, probably due to the release of electroactive metabolites during chlorophyll breakdown when the leaves turn yellow. Thus, the present investigation could open up new opportunities for characterizing botanical systems using electroanalytical techniques. In addition, it could provide further insights into various areas of current relevance, including signal transduction, cell fate/differentiation and developmental biology. Schematic representation of SECM imaging used in this investigation. The SECM probe is a Pt UME disk (25 μm diameter) embedded in an insulating glass sheath so that the ratio of the diameter of the death to that of the electrode surface (RG) is 7. RE denotes the reference electrode Ag/AgCl, sat. KCl and CE refers to the counter electrode, a Pt wire. Oxygen evolving from the leaf surface during photosynthesis diffuses into the electrolyte (0.1 M KCl) and gets reduced at the Pt UME, biased to a potential of −0.5 V, at a diffusion-limited rate to produce a change in the tip-current  相似文献   

18.
《Electroanalysis》2003,15(18):1445-1452
A novel form of hydrodynamic modulation voltammetry (HMV) is described, based on the periodic variation of mass transport in a microjet electrode (MJE) system, in combination with phase‐sensitive detection techniques. In the configuration developed, a jet of solution is fired from a nozzle that is aligned directly over the surface of a dual disk Pt‐Pt ultramicroelectrode (UME). The potential at each electrode is controlled separately. A rotating blade, positioned between the nozzle and the UME probe, is used to periodically interrupt flow to the electrode surface, resulting in modulation of the overall mass transfer rate between two defined extremes. The use of a dual disk UME enables two transport‐limited current signals to be recorded simultaneously, one for the analyte of interest, and the other for a ‘reference species’ (oxygen for the studies described herein). The latter current response corresponds to the variation in mass transport rate in the chopped flow (CF) arrangement and is used as the signal for phase sensitive detection of the analyte current. Studies of potassium hexachloroiridate (III) [IrCl ] oxidation in aqueous solution are used to demonstrate the capabilities of the technique. HMV in the CF‐MJE arrangement allows quantitative concentration measurements, down to at least 5×10?7 M.  相似文献   

19.
Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) are used to monitor changes in the ionization of monolayers of 11-mercaptoundecanoic acid. When using an anionic redox probe, Fe(CN)6(-4), the charge-transfer resistance of the 11-mercaptoundecanoic acid monolayer-modified interface increases in a sigmoidal fashion as the solution is made basic. The opposite effect is observed when using a cationic redox probe. The inflection points of these two titration curves, however, differ when using the different redox probes. This result is taken as being characteristic of the influence that applied potential has on the ionization of the monolayer. The role of substrate potential on the ionization of the monolayer is further investigated by SECM. The SECM measurement monitors the concentration of Ru(NH3)6(+3) as the potential of the substrate is varied about the potential of zero charge. For monolayers of 11-mercaptoundecanoic acid in solutions buffered near the pKa of the terminal carboxylic acid, potential excursions positive of the PZC cause an increase in the concentration of Ru(NH3)6(+3) local to the interface, and potential excursions negative of the PZC cause a decrease in the local concentration of Ru(NH3)6(+3). Similar experiments conducted with an interface modified with 11-undecanethiol had no impact on the local concentration of Ru(NH3)6(+3). These results are interpreted in terms of the influence that applied potential has on the pH of the solution local to the interface and the impact that this has on the ionization of the monolayer.  相似文献   

20.
将含有氧化还原电对的水溶液滴涂在铂盘电极表面, 然后将该电极插入到1,2-二氯乙烷溶液中, 形成稳定的油/水界面. 液滴中的K3Fe(CN)6和K4Fe(CN)6氧化还原电对既可以作为水相中的参比电对参与控制液/液界面上的电势差, 同时又可以作为水相的电子授受体参与界面上的电子转移反应. 结合扫描电化学显微镜电化学系统的特点, 利用其双恒电位仪分别控制界面电势差和现场扫描的优点, 通过扫描电化学显微镜的渐进曲线得到了不同界面电势差控制的电子转移反应速率常数. 实验结果表明, 应用此方法获得的液/液界面可以被外加电位极化, 在一定的电势差范围内, 反应速率常数与界面电势差的关系遵守Butler-Volmer公式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号