首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A higher order compact (HOC) finite difference solution procedure has been proposed for the steady two‐dimensional (2D) convection–diffusion equation on non‐uniform orthogonal Cartesian grids involving no transformation from the physical space to the computational space. Effectiveness of the method is seen from the fact that for the first time, an HOC algorithm on non‐uniform grid has been extended to the Navier–Stokes (N–S) equations. Apart from avoiding usual computational complexities associated with conventional transformation techniques, the method produces very accurate solutions for difficult test cases. Besides including the good features of ordinary HOC schemes, the method has the advantage of better scale resolution with smaller number of grid points, with resultant saving of memory and CPU time. Gain in time however may not be proportional to the decrease in the number of grid points as grid non‐uniformity imparts asymmetry to some of the associated matrices which otherwise would have been symmetric. The solution procedure is also highly robust as it computes complex flows such as that in the lid‐driven square cavity at high Reynolds numbers (Re), for which no HOC results have so far been seen. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
There are two main difficulties in numerical simulation calculations using FD/FV method for the flows in real rivers. Firstly, the boundaries are very complex and secondly, the generated grid is usually very non‐uniform locally. Some numerical models in this field solve the first difficulty by the use of physical curvilinear orthogonal co‐ordinates. However, it is very difficult to generate an orthogonal grid for real rivers and the orthogonal restriction often forces the grid to be over concentrated where high resolution is not required. Recently, more and more models solve the first difficulty by the use of generalized curvilinear co‐ordinates (ξ,η). The governing equations are expressed in a covariant or contra‐variant form in terms of generalized curvilinearco‐ordinates (ξ,η). However, some studies in real rivers indicate that this kind of method has some undesirable mesh sensitivities. Sharp differences in adjacent mesh size may easily lead to a calculation stability problem oreven a false simulation result. Both approaches used presently have their own disadvantages in solving the two difficulties that exist in real rivers. In this paper, the authors present a method for two‐dimensional shallow water flow calculations to solve both of the main difficulties, by formulating the governing equations in a physical form in terms of physical curvilinear non‐orthogonal co‐ordinates (s,n). Derivation of the governing equations is explained, and two numerical examples are employed to demonstrate that the presented method is applicable to non‐orthogonal and significantly non‐uniform grids. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
This paper reports on a numerical algorithm for the steady flow of viscoelastic fluid. The conservative and constitutive equations are solved using the finite volume method (FVM) with a hybrid scheme for the velocities and first‐order upwind approximation for the viscoelastic stress. A non‐uniform staggered grid system is used. The iterative SIMPLE algorithm is employed to relax the coupled momentum and continuity equations. The non‐linear algebraic equations over the flow domain are solved iteratively by the symmetrical coupled Gauss–Seidel (SCGS) method. In both, the full approximation storage (FAS) multigrid algorithm is used. An Oldroyd‐B fluid model was selected for the calculation. Results are reported for planar 4:1 abrupt contraction at various Weissenberg numbers. The solutions are found to be stable and smooth. The solutions show that at high Weissenberg number the domain must be long enough. The convergence of the method has been verified with grid refinement. All the calculations have been performed on a PC equipped with a Pentium III processor at 550 MHz. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, a projection method is presented for solving the flow problems in domains with moving boundaries. In order to track the movement of the domain boundaries, arbitrary‐Lagrangian–Eulerian (ALE) co‐ordinates are used. The unsteady incompressible Navier–Stokes equations on the ALE co‐ordinates are solved by using a projection method developed in this paper. This projection method is based on the Bell's Godunov‐projection method. However, substantial changes are made so that this algorithm is capable of solving the ALE form of incompressible Navier–Stokes equations. Multi‐block structured grids are used to discretize the flow domains. The grid velocity is not explicitly computed; instead the volume change is used to account for the effect of grid movement. A new method is also proposed to compute the freestream capturing metrics so that the geometric conservation law (GCL) can be satisfied exactly in this algorithm. This projection method is also parallelized so that the state of the art high performance computers can be used to match the computation cost associated with the moving grid calculations. Several test cases are solved to verify the performance of this moving‐grid projection method. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   

5.
Presently, improving the accuracy and reducing computational costs are still two major CFD objectives often considered incompatible. This paper proposes to solve this dilemma by developing an adaptive mesh refinement method in order to integrate the 3D Euler and Navier–Stokes equations on structured meshes, where a local multigrid method is used to accelerate convergence for steady compressible flows. The time integration method is a LU‐SGS method (AIAA J 1988; 26: 1025–1026) associated with a spatial Jameson‐type scheme (Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time‐stepping schemes. AIAA Paper, 81‐1259, 1981). Computations of turbulent flows are handled by the standard k–ω model of Wilcox (AIAA J 1994; 32: 247–255). A coarse grid correction, based on composite residuals, has been devised in order to enforce the coupling between the different grid levels and to accelerate the convergence. The efficiency of the method is evaluated on standard 2D and 3D aerodynamic configurations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
A non‐dissipative and very accurate one‐dimensional upwind leapfrog method was successfully extended to higher‐order and multi‐dimensional acoustic equations. The governing equations in characteristic form and staggered grid were utilized to preserve the accuracy. Fourier analysis was performed to find the accurate scheme for acoustics and the resultant two‐dimensional methods were successfully applied to several classical test cases. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts by different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with a full Reynolds stress model (RSM). The turbulent heat fluxes are modelled by a SED concept, the GGDH and the WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models are implemented for an arbitrary three‐dimensional channel. Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non‐staggered grid arrangement. The pressure–velocity coupling is handled by using the SIMPLEC‐algorithm. The convective terms are treated by the van Leer scheme while the diffusive terms are handled by the central‐difference scheme. The hybrid scheme is used for solving the ε equation. The secondary flow generation using the RSM model is compared with a non‐linear kε model (non‐linear eddy viscosity model). The overall comparison between the models is presented in terms of the friction factor and Nusselt number. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
The development of a numerical scheme for non‐hydrostatic free surface flows is described with the objective of improving the resolution characteristics of existing solution methods. The model uses a high‐order compact finite difference method for spatial discretization on a collocated grid and the standard, explicit, single step, four‐stage, fourth‐order Runge–Kutta method for temporal discretization. The Cartesian coordinate system was used. The model requires the solution of two Poisson equations at each time‐step and tridiagonal matrices for each derivative at each of the four stages in a time‐step. Third‐ and fourth‐order accurate boundaries for the flow variables have been developed including the top non‐hydrostatic pressure boundary. The results demonstrate that numerical dissipation which has been a problem with many similar models that are second‐order accurate is practically eliminated. A high accuracy is obtained for the flow variables including the non‐hydrostatic pressure. The accuracy of the model has been tested in numerical experiments. In all cases where analytical solutions are available, both phase errors and amplitude errors are very small. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a detailed multi‐methods comparison of the spatial errors associated with finite difference, finite element and finite volume semi‐discretizations of the scalar advection–diffusion equation. The errors are reported in terms of non‐dimensional phase and group speed, discrete diffusivity, artificial diffusivity, and grid‐induced anisotropy. It is demonstrated that Fourier analysis provides an automatic process for separating the discrete advective operator into its symmetric and skew‐symmetric components and characterizing the spectral behaviour of each operator. For each of the numerical methods considered, asymptotic truncation error and resolution estimates are presented for the limiting cases of pure advection and pure diffusion. It is demonstrated that streamline upwind Petrov–Galerkin and its control‐volume finite element analogue, the streamline upwind control‐volume method, produce both an artificial diffusivity and a concomitant phase speed adjustment in addition to the usual semi‐discrete artifacts observed in the phase speed, group speed and diffusivity. The Galerkin finite element method and its streamline upwind derivatives are shown to exhibit super‐convergent behaviour in terms of phase and group speed when a consistent mass matrix is used in the formulation. In contrast, the CVFEM method and its streamline upwind derivatives yield strictly second‐order behaviour. In Part II of this paper, we consider two‐dimensional semi‐discretizations of the advection–diffusion equation and also assess the affects of grid‐induced anisotropy observed in the non‐dimensional phase speed, and the discrete and artificial diffusivities. Although this work can only be considered a first step in a comprehensive multi‐methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common analysis framework. Published in 2004 by John Wiley & Sons, Ltd.  相似文献   

10.
A transient haemodynamic study in a model cavopulmonary vascular system has been carried out for a typical range of parameters using a finite element‐based Navier–Stokes solver. The focus of this study is to investigate the influence of non‐Newtonian behaviour of the blood on the haemodynamic quantities, such as wall shear stress (WSS) and flow pattern. The computational fluid dynamics (CFD) model is based on an artificial compressibility characteristic‐based split (AC‐CBS) scheme, which has been adopted to solve the Navier–Stokes equations in space–time domain. A power law model has been implemented to characterize the shear thinning nature of the blood depending on the local strain rate. Using the computational model, numerical investigations have been performed for Newtonian and non‐Newtonian flows for different frequencies and input pulse forms. The haemodynamic quantities observed in total cavopulmonary connection (TCPC) for the above conditions suggest that there are considerable differences in average (about 25–40%) and peak (about 50%) WSS distributions, when the non‐Newtonian behaviour of the blood is taken into account. The lower WSS levels observed for non‐Newtonian cases point to the higher risk of lesion formation, especially at higher pulsation frequencies. A realistic pulse form is relatively safer than a sinusoidal pulse as it has more energy distributed in the higher harmonics, which results in higher average WSS values. The present study highlights the importance of including non‐Newtonian shear thinning behaviour for modelling blood flow in the vicinity of repaired arterial connections. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A vertically integrated non‐linear dispersive wave model is expressed in non‐orthogonal curvilinear co‐ordinate system for simulating shallow or deep water wave motions in regions of arbitrary geometry. Both dependent and independent variables are transformed so that an irregular physical domain is converted into a rectangular computational domain with contravariant velocities. Thus, the wall condition for enclosures surrounding a typical physical domain, such as a channel, port or harbor, is satisfied accurately and easily. The numerical scheme is based on staggered grid finite‐difference approximations, which result in implicit formulations for the momentum equations and semi‐explicit formulation for the continuity equation. Test cases of linear wave propagation in converging, diverging and circular channels are performed to check the reliability of model simulations against the analytical solutions. Cnoidal waves of different steepness values in a circular channel are also considered as examples to non‐linear wave propagation within curved walls. In closing, remarks concerning versatility and practical uses of the numerical model are made. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
A new grid‐free upwind relaxation scheme for simulating inviscid compressible flows is presented in this paper. The non‐linear conservation equations are converted to linear convection equations with non‐linear source terms by using a relaxation system and its interpretation as a discrete Boltzmann equation. A splitting method is used to separate the convection and relaxation parts. Least squares upwinding is used for discretizing the convection equations, thus developing a grid‐free scheme which can operate on any arbitrary distribution of points. The scheme is grid free in the sense that it works on any arbitrary distribution of points and it does not require any topological information like elements, faces, edges, etc. This method is tested on some standard test cases. To explore the power of the grid‐free scheme, solution‐based adaptation of points is done and the results are presented, which demonstrate the efficiency of the new grid‐free scheme. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The volume of fluid (VOF) method is used to perform two‐phase simulations (gas–liquid). The governing Navier–Stokes conservation equations of the flow field are numerically solved on two‐dimensional axisymmetric or three‐dimensional unstructured grids, using Cartesian velocity components, following the finite volume approximation and a pressure correction method. A new method of adaptive grid local refinement is developed in order to enhance the accuracy of the predictions, to capture the sharp gas–liquid interface and to speed up the calculations. Results are compared with experimental measurements in order to assess the efficiency of the method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The current paper is focused on investigating a Jacobian‐free Newton–Krylov (JFNK) method to obtain a fully implicit solution for two‐phase flows. In the JFNK formulation, the Jacobian matrix is not directly evaluated, potentially leading to major computational savings compared with a simple Newton's solver. The objectives of the present paper are as follows: (i) application of the JFNK method to two‐fluid models; (ii) investigation of the advantages and disadvantages of the fully implicit JFNK method compared with commonly used explicit formulations and implicit Newton–Krylov calculations using the determination of the Jacobian matrix; and (iii) comparison of the numerical predictions with those obtained by the Canadian Algorithm for Thermaulhydraulics Network Analysis 4. Two well‐known benchmarks are considered, the water faucet and the oscillating manometer. An isentropic two‐fluid model is selected. Time discretization is performed using a backward Euler scheme. A Crank–Nicolson scheme is also implemented to check the effect of temporal discretization on the predictions. Advection Upstream Splitting Method+ is applied to the convective fluxes. The source terms are discretized using a central differencing scheme. One explicit and two implicit formulations, one with Newton's solver with the Jacobian matrix and one with JFNK, are implemented. A detailed grid and model parameter sensitivity analysis is performed. For both cases, the JFNK predictions are in good agreement with the analytical solutions and explicit profiles. Further, stable results can be achieved using high CFL numbers up to 200 with a suitable choice of JFNK parameters. The computational time is significantly reduced by JFNK compared with the calculations requiring the determination of the Jacobian matrix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The object of this study is to investigate two derivative free optimization techniques, i.e. Newton‐based method and an evolutionary method for shape optimization of flow geometry problems. The approaches are compared quantitatively with respect to efficiency and quality by using the minimization of the pressure drop of a pipe conjunction which can be considered as a representative test case for a practical three‐dimensional flow configuration. The comparison is performed by using CONDOR representing derivative free Newton‐based techniques and SIMPLIFIED NSGA‐II as the representative of evolutionary methods (EM). For the shape variation the computational grid employed by the flow solver is deformed. To do this, the displacement fields are scaled by design variables and added to the initial grid configuration. The displacement vectors are calculated once before the optimization procedure by means of a free form deformation (FFD) technique. The simulation tool employed is a parallel multi‐grid flow solver, which uses a fully conservative finite‐volume method for the solution of the incompressible Navier–Stokes equations on a non‐staggered, cell‐centred grid arrangement. For the coupling of pressure and velocity a pressure‐correction approach of SIMPLE type is used. The possibility of parallel computing and a multi‐grid technique allow for a high numerical efficiency. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
A previously developed numerical model that solves the incompressible, non‐hydrostatic, Navier–Stokes equations for free surface flow is analysed on a non‐uniform vertical grid. The equations are vertically transformed to the σ‐coordinate system and solved in a fractional step manner in which the pressure is computed implicitly by correcting the hydrostatic flow field to be divergence free. Numerical consistency, accuracy and efficiency are assessed with analytical methods and numerical experiments for a varying vertical grid discretization. Specific discretizations are proposed that attain greater accuracy and minimize computational effort when compared to a uniform vertical discretization. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   

17.
Almost all evaluations of convection schemes reported in the literature are conducted using simple problems on uniform orthogonal grids; thus, having limited contribution when solving industrial computational fluid dynamics (CFD), where the grids are usually non‐orthogonal with distortions. Herein, several convection schemes are assessed in uniform and distorted non‐orthogonal grids with emphasis on industrial applications. Linear and nonlinear (TVD) convection schemes are assessed on analytical benchmarks in both uniform and distorted grids. To evaluate the performance of the schemes, four error metrics are used: dissipation, phase and L1 errors, and the schemes' effective order of accuracy. Qualitative and quantitative deterioration of these error metrics as a function of the grid distortion metrics are investigated, and rigorous verifications are performed. Recommendations for effective use of the convection schemes based on the range of grid aspect ratio (AR), expansion ratio (ER) and skewness (Q) are included. A ship hydrodynamics case is studied, involving a Reynolds averaged Navier–Stokes simulation of a bare‐hull KVLCC2 tanker using linear and nonlinear convection schemes coupled with isotropic and anisotropic Reynolds‐stress (ARS) turbulence models using CFDShip‐Iowa v4. Predictions of local velocities and turbulent quantities from the midships to the nominal wake plane are compared with experimental fluid dynamics (EFD), and rigorous verification and validation analyses for integral forces and moments are performed for 0° and 12° drift angles. Best predictions are observed when coupling a second‐order TVD scheme with the anisotropic turbulence model. Further improvements are observed in terms of prediction of the vortical structures for 30° drift when using TVD2S‐ARS coupled with DES. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
An implicit method is developed for solving the complete three‐dimensional (3D) Navier–Stokes equations. The algorithm is based upon a staggered finite difference Crank‐Nicholson scheme on a Cartesian grid. A new top‐layer pressure treatment and a partial cell bottom treatment are introduced so that the 3D model is fully non‐hydrostatic and is free of any hydrostatic assumption. A domain decomposition method is used to segregate the resulting 3D matrix system into a series of two‐dimensional vertical plane problems, for each of which a block tri‐diagonal system can be directly solved for the unknown horizontal velocity. Numerical tests including linear standing waves, nonlinear sloshing motions, and progressive wave interactions with uneven bottoms are performed. It is found that the model is capable to simulate accurately a range of free‐surface flow problems using a very small number of vertical layers (e.g. two–four layers). The developed model is second‐order accuracy in time and space and is unconditionally stable; and it can be effectively used to model 3D surface wave motions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
A novel method to generate body‐fitted grids based on the direct solution for three scalar functions is derived. The solution for scalar variables ξ, η and ζ is obtained with a conventional finite volume method based on a physical space formulation. The grid is adapted or re‐zoned to eliminate the residual error between the current solution and the desired solution, by means of an implicit grid‐correction procedure. The scalar variables are re‐mapped and the process is reiterated until convergence is obtained. Calculations are performed for a variety of problems by assuming combined Dirichlet–Neumann and pure Dirichlet boundary conditions involving the use of transcendental control functions, as well as functions designed to effect grid control automatically on the basis of boundary values. The use of dimensional analysis to build stable exponential functions and other control functions is demonstrated. Automatic procedures are implemented: one based on a finite difference approximation to the Cristoffel terms assuming local‐boundary orthogonality, and another designed to procure boundary orthogonality. The performance of the new scheme is shown to be comparable with that of conventional inverse methods when calculations are performed on benchmark problems through the application of point‐by‐point and whole‐field solution schemes. Advantages and disadvantages of the present method are critically appraised. Copyright © 1999 National Research Council of Canada.  相似文献   

20.
This paper presents the calculated results for three classes of typical modern ships in modelling of ship‐generated waves. Simulations of turbulent free‐surface flows around ships are performed in a numerical water tank, based on the FINFLO‐RANS SHIP solver developed at Helsinki University of Technology. The Reynolds‐averaged Navier–Stokes (RANS) equations with the artificial compressibility and the non‐linear free‐surface boundary conditions are discretized by means of a cell‐centred finite‐volume scheme. The convergence performance is improved with the multigrid method. A free surface is tracked using a moving mesh technology, in which the non‐linear free‐surface boundary conditions are given on the actual location of the free surface. Test cases recommended are a container ship, a US Navy combatant and a tanker. The calculated results are compared with the experimental data available in the literature in terms of the wave profiles, wave pattern, and turbulent flow fields for two turbulence models, Chien's low Reynolds number k–εmodel and Baldwin–Lomax's model. Furthermore, the convergence performance, the grid refinement study and the effect of turbulence models on the waves have been investigated. Additionally, comparison of two types of the dynamic free‐surface boundary conditions is made. Copyright © 2003 John Wiley& Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号