首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Poly(vinyl chloride)‐based membranes of salen ligands, 2‐((E)‐((1R,2S)‐2‐((E)‐5‐tert‐butyl‐2‐hydroxybenzylideneamino)cyclohexylimino)methyl)‐4‐tert‐butyl phenol (S1) and 2‐((E)‐((1R,2S)‐2‐((E)‐3,5‐di‐tert‐butyl‐2‐hydroxybenzylideneamino)cyclohexylimino)methyl)‐4,6‐di‐tert‐butylphenol (S2) were fabricated and explored as cobalt(II) selective electrodes. The performance of the polymeric membrane electrode (PME) and coated graphite electrode (CGE) were compared and it was observed that CGE showed a wide working concentration range of 1.1×10?8 to 1.0×10?1 mol L?1 with a limit of detection of 7.0×10?9 mol L?1 exhibiting the Nernstian slope 29.6 mV/decade of activity in the pH range 3.0–9.0. It was used for the determination of cobalt(II) ions in water, soil, beer, pharmaceutical samples and medicinal plants and would be used as an indicator electrode in potentiometric titration with EDTA.  相似文献   

2.
《Electroanalysis》2005,17(9):776-782
Three recently synthesized Schiff's bases were studied to characterize their ability as Cr3+ ion carrier in PVC‐membrane electrodes. The polymeric membrane (PME) and coated glassy carbon (CGCE) electrodes based on 2‐hydroxybenzaldehyde‐O,O′‐(1,2‐dioxetane‐1,2‐diyl) oxime (L1) exhibited Nernstian responses for Cr3+ ion over wide concentration ranges (1.5×10?6–8.0×10?3 M for PME and 4.0×10?7–3.0×10?3 M for CGCE) and very low limits of detection (1.0×10?6 M for PME and 2.0×10?7 M for CGCE). The proposed potentiometric sensors manifest advantages of relatively fast response and, most importantly, good selectivities relative to a wide variety of other cations. The selectivity behavior of the proposed Cr3+ ion‐selective electrodes revealed a considerable improvement compared to the best previously PVC‐membrane electrodes for chromium(III) ion. The potentiometric responses of the electrodes are independent of pH of the test solution in the pH range 3.0–6.0. The electrodes were successfully applied to determine chromium(III) in water samples.  相似文献   

3.
Preliminary studies on the two Schiff bases N2‐((3H‐indol‐3‐yl)methylene)‐6‐phenyl‐1,3,5‐triazine‐2,4‐diamine (L1) and N2,N4‐bis((3H‐indol‐3‐yl)methylene)‐6‐phenyl‐1,3,5‐triazine‐2,4‐diamine (L2) have shown that they can act as Sm3+ selective electrodes. The performances of a polymeric membrane electrode and a coated graphite electrode based on L2 were compared and the CGE proved to be better, as it shows a low detection limit of 1.8×10?8 mol L?1, a Nernstian slope of 19.6±0.4 mV decade?1 of activity with a response time of 11 s in the pH range of 3.0–9.0. The CGE was used to determine Sm3+ in medicinal plants and soil samples. It was also used to determine fluoride ions in mouthwash samples and in toothpaste.  相似文献   

4.
《Analytical letters》2012,45(4):683-695
Abstract

A highly selective and sensitive triiodide sensor based on a 2‐(((2‐(((E)‐1‐(2‐hydroxy phenyl) methylidine) amino) phenyl) imino) methyl) phenol with iodine (CTC) as membrane carrier was developed. The electrode revealed a Nernstian behavior over a very wide triiodide‐ion concentration range (5.0×10?8–1.0×10?2 M), and relatively low detection limit (3.0×10?8 M). The potentiometric response is independent of the pH of solution in the pH range of 3.0–10.0. The electrodes manifest advantages of low resistance, very fast response (<12 s), and most importantly, good selectivities relative to a wide variety of inorganic and organic anions, including iodide, bromide, chloride, fluoride, sulfite, sulfate, cyanide, thiocyanate, and acetate. In fact, the selectivity behavior of the proposed triiodide ion‐selective electrode shows great improvements compared to the previously reported electrodes for the triiodide ion. The proposed membrane sensor can be used for at least 6 months without any significant divergences in the potential. The electrode was successfully applied as an indicator electrode in the titration of triiodide with thiosulfate ion.  相似文献   

5.
Novel PVC membrane (PME) and coated graphite (CGE) Cu2+‐selective electrodes based on 5,6,7,8,9,10‐hexahydro‐2H‐1,13,4,7,10‐benzodioxatriazacyclopentadecine‐3,11(4H,12H)‐dione are prepared. The electrodes reveal a Nernstian behavior over wide Cu2+ ion concentration ranges (1.0×10?7–1.0×10?1 M for PME and 1.0×10?8–1.0×10?1 M for CGE) with very low limits of detection (7.8×10?8 M for PME and 9.1×10?9 M for CGE). The potentiometric responses are independent of the pH of the test solutions in the pH range 2.7–6.2. The proposed electrodes possess very good selectivities for Cu2+ over a wide variety of the cations including alkali, alkaline earth, transitions and heavy metal ions. The practical utility of the proposed electrodes have been demonstrated by their use in the study of interactions between copper ions and human growth hormone (hGH) in biological systems, potentiometric titration of copper with EDTA and determination of copper content of a sheep blood serum sample and some other real samples.  相似文献   

6.
《Electroanalysis》2004,16(16):1336-1342
The construction, performance characteristics, and application of polymeric membrane (PME) and coated graphite (CGE) thiocyanate‐selective electrodes are reported. The electrodes were prepared by incorporating the complex [Cu(L)](NO3)2 (L=4,7‐bis(3‐aminopropyl)‐1‐thia‐4,7‐diazacyclononane) into a plasiticized poly(vinyl chloride) membrane. The influence of membrane composition, pH of test solution, and foreign ions were investigated. The electrodes reveal Nernstian behavior over a wide SCN? ion concentration range (1.0×10?6–1.0×10?1 M for PME and 5.0×10?7–1.0×10?2 M for CGE) and show fast dynamic response times of 15 s and lower. The proposed sensors show high selectivity towards thiocyanate over several common organic and inorganic anions. They were successfully applied to the direct determination of thiocyanate in urine and saliva of smokers and nonsmokers, and as an indicator electrode in titration of Ag+ ions with thiocyanate.  相似文献   

7.
《Electroanalysis》2002,14(24):1691-1698
Three different recently synthesized aza‐thioether crowns containing a 1,10‐phenanthroline sub‐unit (L1–L3) and a corresponding acyclic ligand (L4) were studied to characterize their abilities as silver ion ionophores in PVC‐membrane electrodes. Novel conventional silver‐selective electrodes with internal reference solution (CONISE) and coated graphite‐solid contact electrodes (SCISE) were prepared based on one of the 15‐membered crowns containing two donating S atoms and two phenanthroline‐N atoms (L1). The electrodes reveal a Nernstian behavior over wide Ag+ ion concentration ranges (1.0×10?5?1.0×10?1 M for CONISE and 5.0×10?8?4.0×10?2 M for SCISE) and very low limits of detection (8.0×10?6 M for CONISE and 3.0×10?8 M for SCISE). The potentiometric response is independent from pH of the solution in the pH range 3.0–8.0. The electrodes manifest advantages of low resistance, very fast response and, most importantly, good selectivities relative to a wide variety of other cations. The electrodes can be used for at least 2 months (for CONISE) and 4 months for (SCISE) without any appreciable divergence in potentials. The electrodes were used as an indicator electrode in the potentiometric titration of Ag+ ion and in the determination of silver in photographic emulsions and in radiographic and photographic films.  相似文献   

8.
A new modified carbon paste electrode (CPE) based on a recently synthesized ligand [2‐mercapto‐5‐(3‐nitrophenyl)‐1,3,4‐thiadiazole] (MNT), self‐assembled to gold nanoparticles (GNP) as suitable carrier for Cd(II) ion with potentiometric method are described. The proposed electrode exhibits a Nernstian slope of 29.4±1.0 mV per decade for Cd(II) ion over a wide concentration range from 3.1×10?8 to 3.1×10?4 mol L?1. The detection limit of electrode was 2.0×10?8 mol L?1 of cadmium ion. The potentiometric responses of electrode based on MNT is independent of the pH of test solution in the pH range 2.0–4.0. It has quick response with response time of about 6 s. The proposed electrode show fairly good selectivity over some alkali, alkaline earth, transition and heavy metal ions. Finally, the proposed electrode was successfully employed to detect Cd(II) ion in hair and water samples.  相似文献   

9.
Solid contact (SC) ion‐selective electrodes (ISEs) have been recognized as the next generation of ISEs. In this work, the electrical conductivity and mechanical strength of a carbon nanotube (CNT) tower enable it to play the dual roles of transducer and substrate for micro SC‐ISEs. The electrode had a close to Nernstian slope of 35 mV/decade aCa2+, a linear range of four orders of magnitude of calcium ion activity (10?5.6 to 10?1.8 M), and a detection limit of 1.6×10?6 M. The simplified fabrication by a one‐step drop casting makes miniaturizing SC‐ISEs and fabricating sensor arrays easier to achieve.  相似文献   

10.
《Electroanalysis》2006,18(3):299-306
Different ionophoric species, viz.: 18‐crown‐6 (18C6), dibenzo‐18‐crown‐6 (DB18C6) and calix[6]arene (CAX), as electroactive materials, with 2‐nitrophenyloctylether (2‐NPOE), bis(ethylhexyl)sebacate (DOS), dioctyl phthalate (DOP), and didecyl phthalate (DDP) as plasticizing solvent mediators were used to construct Cr3+ selective electrodes in a PVC matrix in the ratio (w/w) PVC: ionophore: plasticizer (60 : 2 : 120). Seven electrodes out of the fabricated 12 electrodes, gave best results in terms of working concentration range (1.0×10?5?1.0×10?1 M) with a close to Nernstian slope of 18.5 and a Nernstian slope of 20.0 mV/decade of activity. The usable pH range of the sensors is 4.0–7.0. The detection limit of the selected electrodes is ≤1.0×10?7 M. The response time of the sensors is 8–35 s, depending on the concentration of Cr3+ used. The selectivity coefficient values indicate that the electrodes are highly selective for Cr3+ over a number of other cations except Pb2+ and Na+ (for some electrodes). The electrodes have successfully been used to determine Cr3+ in certified and real alloys and in effluents of electroplating shops with a precision as relative standard deviation (RSD)<3%, for each of the proposed Cr3+‐ion selective electrodes. The results obtained by the proposed ISEs are in good agreement with the results obtained by direct flame AAS method.  相似文献   

11.
《Electroanalysis》2005,17(8):713-718
Five plastic membrane Pb2+‐selective electrodes were prepared based on 1,4‐bis(N‐tosyl‐o‐aminophenoxy)butane I , 1,4‐bis(N‐allyl‐N‐tosyl‐o‐aminophenoxy)butane II , 1,4‐bis(N‐benzyl‐N‐tosyl‐o‐aminophenoxy)butane III , 1,4‐bis[N‐(o‐allyloxybenzyl)‐N‐tosyl‐o‐aminophenoxy]butane IV , and 1,4‐bis(N‐octyl‐N‐tosyl‐o‐aminophenoxy)butane V as neutral carriers. The electrodes exhibited nearly Nernstian responses over the concentration ranges, 2.5×10?4–4.0×10?2, 2.5×10?5–4.0×10?2, 7.9×10?5–4.0×10?2, 2.2×10?5–4.0×10?2, and 1.9×10?4–4.0×10?2 M for electrodes composed with the ionophores I–V , respectively. All electrodes showed pH range of about 4.0 to 11.5 and working temperature range of 22 to 70 °C with isothermal temperature coefficients of 1.19×10?3, 1.16×10?3, 1.16×10?3, 1.00×10?3 , and 1.32×10?3 V/°C for electrodes I–V respectively.  相似文献   

12.
The two podand chelates based on diethylsulfide, 1,5‐bis(2′‐hydroxy‐4′‐nitrophenoxy)‐3‐thiapentane (L1) and 1,5‐bis(8′‐oxybenzopyridine)‐3‐thia pentane (L2), have been synthesized and explored as neutral ionophores for preparing poly(vinyl chloride) based membrane electrodes selective to Pb2+. The addition of anionic additives and various plasticizers has been found to substantially improve the performance of the electrode. The best performance was obtained with the electrode No. 1 having a membrane of ionophore (L1) with the composition PVC:o‐NPOE:ionophore (L1):NaTFPB (%w/w) of 33 : 62 : 3 : 2. The electrode exhibits Nernstian response with a slope of 31.57±0.3 mV decade?1 of activity in the concentration range from 2.0×10?9 to 1.0×10?1 M Pb2+, performs satisfactorily over a wide pH range (1.6–7.0), with a fast response time (5 s).  相似文献   

13.
《Electroanalysis》2004,16(4):282-288
Five recently synthesized macrocyclic diamides were investigated to characterize their ability as beryllium ion carriers in potentiometric PVC‐membrane electrodes. The electrodes based on 1,15‐diaza‐3,4;12,13‐dibenzo‐5,8,11‐trioxabicyclo[13,2,2] heptadecane‐2,14‐dione exhibited a Nernstian response for Be2+ ion over wide concentration ranges (from 3.0×10?6 to 3.0×10?2 M for polymeric membrane electrode, PME, and from 5.0×10?7 to 2.0×10?2 M for coated glassy carbon electrode, CGCE) and very low detection limits (2.0 ×10?6 M for PME and 4.0×10?7 M for (CGCE). The electrodes possess low resistances, fast responses, satisfactory reproducibilities and, most importantly, good selectivities relative to a variety of other common cations. The potentiometric response of the electrodes is independent of pH of test solution in the pH range of 4.0–7.5. The proposed sensors were used to determine beryllium ion in water samples.  相似文献   

14.
New polymeric membrane cadmium‐ion selective sensors have been prepared by incorporating nitrogen and sulfur containing tridentate ligands as the ionophores into the plasticized PVC membranes. Poly(vinyl chloride) (PVC) based membranes of potassium hydrotris[N‐(2,6‐xylyl)thioimdazolyl) borate] (KTt2,6‐xylyl) and potassium hydrotris(3‐phenyl‐5‐methylpyrazolyl) borate (KTpPh,Me) with sodium tetraphenyl borate (NaTPB) as an anionic excluder and dibutylphthalate (DBP), tributylphthalate (TBP), dioctylsebacate (DOS), and o‐nitrophenyloctyl ether (o‐NPOE) as plasticizing solvent mediators were investigated in different compositions. KTt2,6‐xylyl was found to be a selective and sensitive ion carrier for Cd(II) membrane sensor. A membrane composed of KTt2,6‐xylyl:NaTPB:PVC:DBP with the % mole ratio 2.3 : 1.1 : 34.8 : 61.8 (w/w) works well over a very wide concentration range (7.8×10?8–1.0×10?2 M) with a Nernstian slope of 29.4±0.2 mV/decades of activity between pH values of 3.5 to 9.0 with a detection limit of 4.37×10?8 M. The sensor displays very good discrimination toward Cd(II) ions with regard to most common cations. The proposed sensor shows a short response time for whole concentration range (ca. 8 s). The effects of the cationic (tetrabutylammonium chloride, TBC), anionic (sodium dodecyl sulfate, SDS) and nonionic (Triton X‐100) surfactants were investigated on the potentiometric properties of proposed cadmium‐selective sensor. The proposed sensor based on KTt2,6‐xylyl ionophore has also been used for the direct determination of cadmium ions in different water samples and human urine samples.  相似文献   

15.
A plasticized PVC (polyvinyl chloride) membrane based oxalate ion selective electrode has been developed by using the condensation product of m‐aminoacetophenone and ethylenediamine. The transition metal complexes of the ligand N,N′‐bis(m‐aminoacetophenene)ethylenediamine (L) were synthesized and incorporated as ionophore for the synthesis of oxalate ion selective electrodes. Most appropriate result in terms of dynamic range, detection limit and response behavior was determined for the Ni(II) bis‐(m‐aminoacetophenone)ethylenediamine complex. The electrode demonstrated higher selectivity for oxalate ion with improved performance as compared to other carriers reported in past. The electrode shows Nernstian slope of (?28.5±0.4) mV·decade?1 with improved linear range of 1×10?1?1×10?7 mol·L?1, with a comparatively lower detection limit in the pH range of 5–10.5, giving a relatively fast response within 10 s and reasonable reproducibility. The selectivity coefficient was calculated using matched potential method and fixed interference method. The lifetime of the electrode was found to be nearly 2 months. The response mechanism and the interaction of oxalate ion with the complexes have been discussed by UV‐visible spectroscopic technique. Further the electrode was also successfully applied to determine the oxalate content in water samples.  相似文献   

16.
A new ion selective electrode for salicylate based on N,N'-(aminoethyl)ethylenediamide bis(2-salicylideneimine) binuclear copper(Ⅱ) complex [Cu(Ⅱ)2-AEBS] as an ionophore was developed. The electrode has a linear range from 1.0 × 10^-1 to 5.0 ×10^-7 mol·L^- 1 with a near-Nemstian slope of ( - 55 ±1 ) mV/decade and a detection limit of 2.0 × 10-7 mol·L^-1 in phosphorate buffer solution of pH 5.0 at 25 ℃. It shows good selectivity for Sal^- and displays anti-Hofmeister selectivity sequence: Sal^-〉SCN^-〉 ClO4^- 〉I^-〉 NO2^- 〉Br^-〉 NO3^- 〉Cl^-〉 SO3^2- 〉 SO4^2- The proposed sensor based on binuclear copper(Ⅱ)complex has a fast response time of 5-10 s and can be used for at least 2 months without any major deviation. The response mechanism is discussed in view of the alternating current (AC) impedance technique and the UV-vis spectroscopy technique. The effect of the electrode membrane compositions and the experimental conditions were studied. The electrode has been successfully used for the determination of salicylate ion in drug pharmaceutical preparations.  相似文献   

17.
Three types of ion‐selective electrodes: PVC membrane, modified carbon paste (CPE), and coated graphite electrodes (CGE) have been constructed for determining paroxetine hydrochloride (Prx). The electrodes are based on the ion pair of paroxetine with sodium tetraphenylborate (NaTPB) using dibutyl phthalate as plasticizing solvent. Fast, stable and potentiometric response was obtained over the concentration range of 1.1×10?5–1×10?2 mol L?1 with low detection limit of 6.9×10?6 mol L?1 and slope of a 56.7±0.3mV decade?1 for PVC membrane electrode, the concentration range of 2×10?5–1×10?2 mol L?1 with low detection limit of 1.2×10?5 mol L?1 and slope of a 57.7±0.6 mV decade?1 for CPE, and the concentration range of 2×10?5–1×10?2 mol L?1 with low detection limit of 8.9×10?6 mol L?1 and slope of a 56.1±0.1 mV decade?1 for CGE. The proposed electrodes display good selectivity for paroxetine with respect to a number of common inorganic and organic species. The electrodes were successfully applied to the potentiometric determination of paroxetine hydrochloride in its pure state, its pharmaceutical preparation, human urine and plasma.  相似文献   

18.
《Electroanalysis》2005,17(11):1003-1007
A novel PVC membrane ion‐selective electrode based on tribenzyltin(IV) dithiocarbamate [Sn(IV)–TBDTB] as neutral carrier was developed for thiocyanate (SCN?) determination. The electrode exhibits a near‐Nernstian response for SCN? with a slope of 62.8±2.0 mV per decade over a wide concentration range 1.0×10?1–2.0×10?6 mol L?1 and a detection limit of 1.0×10?6 mol L?1 in MES–NaOH buffer, pH 6.0, at 25 °C. The electrode prepared with 1.5 wt.% Sn(IV)–TBDTB, 32.5 wt.% PVC and 66.0 wt.% 2‐nitrophenyloctyl ether (o‐NPOE) shows optimal response characteristics. Anti‐Hofmeister selectivity sequence for a series of anions shown by the electrode was as follows: SCN?>Sal?>I?>ClO >phCOO?>CH3COO?>Br?>Cl?>NO >NO >Citrate>SO42?. The useful pH range for the electrode was found to be 3–7 with a response time 30–40 s. The electrode has been used for direct determination of thiocyanate in wastewater with satisfactory results.  相似文献   

19.
Tripodal cadmium complex of hydrotris(3‐phenyl‐5‐methylpyrazolyl)borate (I1) and macrocyclic ligand 5,7 : 12,14 : 19,21 : 26,28‐Bzo4‐[28]‐5,13,19,27‐tetraene‐8,11,22,25‐N4–1,4,15,18‐O4 (I2), have been synthesized and characterized by IR, 1H NMR, Mass and elemental analysis. Spectroscopic investigations indicate high affinity of these receptors for dihydrogen phosphate ion. Polyvinyl chloride (PVC) based membranes of (I1) and (I2) using hexadecyl trimethylammonium bromide (HTAB) as cation discriminator and dibutylpthalate (DBP), tributyl phosphate (TBP), dioctylsebacate (DOS), and o‐nitrophenyloctyl ether (o‐NPOE), as plasticizing solvent mediators were prepared and investigated as H2PO selective sensors. The best performance was shown by the membrane of composition (w/w) (I2) (5%):PVC (31%) : DBP (61.5%):HTAB (2.5%). This sensor works well over a wide concentration range 2.1×10?7 to 1.0×10?2 M with Nernstian compliance (59.0 mV decade?1 of activity) with a fast response time of 14 s and showed good selectivity for dihydrogen phosphate ion over a number of anions. The sensor exhibits good reproducibility (SD±0.3 mV) and could be used successfully for the determination of phosphate in soil water samples.  相似文献   

20.
Two new highly selective triiodide electrodes have been prepared using charge‐transfer complex of iodine with cryptand 222 as an electroactive ionophore and nitrophenyl octyl ether as a plasticizing agent. The electrodes showed Nernstian response to triiodide ions over a concentration range from 1.0 × 10?;2 — 7.9 × 10?;7 M and from 1.0 × 10?;2 — 1 × 10?;6 M with detection limits of 6.3 × 10?;7 and 7.9 × 10?;7 M for cryptand and its charge‐transfer complex with iodine, respectively. The response times (t95%) of the sensors were 10 and 5 s. The membrane could be used for more than 1 month without any divergence in potentials. The proposed sensors exhibited very high selectivity for triiodide ion over other anions, and could be used in a wide pH range ?2–10. These electrodes were successfully applied as an indicator electrode in potentiometric titration of copper in ore samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号