首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A simple method based on liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (LC‐DAD‐ESI‐MS) was developed for the quality assessment of Cortex Phellodendri (CP), which was mainly derived from two species of Phellodendron chinense Schneid and Phellodendron amurense Rupr. Total 41 compounds, including 14 phenols, 24 alkaloids and three liminoidal triterpenes were identified or tentatively characterized from the 75% methanol extract of CP samples by online ESI‐MSn fragmentation and UV spectra analysis. Among them, two phenols and six alkaloids were simultaneously quantified using HPLC‐DAD method. The validated HPLC‐DAD method showed a good linearity, precision, repeatability and accuracy for the quantification of eight marker compounds. Furthermore, the plausible fragmentation pathway of the representative compounds were proposed in the present study. The differences of the chemical constituents content and the comprehensive HPLC profiles between the two CP species using LC‐DAD‐ESI‐MS method are reported for the first time, indicating that the CP drugs from different resources should be used separately in the clinic. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A high‐performance liquid chromatography coupled with photodiode array detection and electrospray ionization tandem mass spectrometry (HPLC‐PAD‐ESI‐MSn) method was developed to evaluate the quality of Hpericum japomicum through establishing chromatographic fingerprint and simultaneous determination of seven phenolic compounds. The analysis was achieved on an Ultimate XB‐C18 analytical column (250 mm × 4.6 mm i.d., 5 µm) using an aqueous solution of acetic acid (pH 3.8) and methanol as the mobile phase. Ten samples of H. japomicum from various habitats were investigated and the correlation coefficients of similarity were determined from the HPLC fingerprints. By using an online ESI‐MSn, 20 common peaks in chromatographic fingerprints were identified as phenols, including flavones and their glycosides, flavonones and their glucosides, flavanols, xanthones, phloroglucinols, phenyl propanoids and chromones. Based on the above study, seven phenols which are considered to be major constituents in H. japomicum, including 3,4‐dihydroxybenzoic acid (1), taxfolin‐7‐O‐α‐l ‐rhamnoside (7), 7‐dihydroxy‐2‐(1‐methylpropyl)chromone‐8‐β‐d ‐glucoside (8), isoquercitrin (14), quercitrin (16), quercetin‐7‐O‐α‐l‐ rhamnoside (18) and quercetin (19) were quantified by the validated HPLC‐PAD method. This developed method by combination of chromatographic fingerprint and quantification analysis could be applied to control the quality of H. japomicum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The determination of peroxidase activities is the basis for enzyme‐labeled bioaffinity assays, peroxidase‐mimicking DNAzymes‐ and nanoparticles‐based assays, and characterization of the catalytic functions of peroxidase mimetics. Here, a facile, sensitive, and cost‐effective solvent polymeric membrane‐based peroxidase detection platform is described that utilizes reaction intermediates with different pKa values from those of substrates and final products. Several key but long‐debated intermediates in the peroxidative oxidation of o‐phenylenediamine (o‐PD) have been identified and their charge states have been estimated. By using a solvent polymeric membrane functionalized by an appropriate substituted tetraphenylborate as a receptor, those cationic intermediates could be transferred into the membrane from the aqueous phase to induce a large cationic potential response. Thus, the potentiometric indication of the o‐PD oxidation catalyzed by peroxidase or its mimetics can be fulfilled. Horseradish peroxidase has been detected with a detection limit at least two orders of magnitude lower than those obtained by spectrophotometric techniques and traditional membrane‐based methods. As an example of peroxidase mimetics, G‐quadruplex DNAzymes were probed by the intermediate‐sensitive membrane and a label‐free thrombin detection protocol was developed based on the catalytic activity of the thrombin‐binding G‐quadruplex aptamer.  相似文献   

4.
A rapid liquid phase extraction employing a novel hydrophobic surfactant‐based room temperature ionic liquid (RTIL), tetrabutylphosphonium dioctyl sulfosuccinate ([4C4P][AOT]), coupled with capillary electrophoretic‐UV (CE‐UV) detection is developed for removal and determination of phenolic compounds. The long‐carbon‐chain RTIL used is sparingly soluble in most solvents and can be used to replace volatile organic solvents. This fact, in combination with functional‐surfactant‐anions, is proposed to reduce the interfacial energy of the two immiscible liquid phases, resulting in highly efficient extraction of analytes. Several parameters that influence the extraction efficiencies, such as extraction time, RTIL type, pH value, and ionic strength of aqueous solutions, were investigated. It was found that, under acidic conditions, most of the investigated phenols were extracted from aqueous solution into the RTIL phase within 12 min. Good linearity was observed over the concentration range of 0.1–80.0 μg/mL for all phenols investigated. The precision of this method, expressed as RSD, was determined to be within 3.4–5.3% range. The LODs (S/N = 3) of the method were in the range of 0.047–0.257 μg/mL. The proposed methodology was successfully applied to determination of phenols in real water samples.  相似文献   

5.
A new electrochemical immunosensing protocol for sensitive detection of alpha‐fetoprotein (AFP, as a model) in human serum was developed by means of immobilization of horseradish peroxidase‐anti‐AFP conjugates (HRP‐anti‐AFP) onto graphene and nanogold‐functionalized biomimetic interfaces. The low‐toxic and high‐conductive graphene complex provided a large capacity for nanoparticulate immobilization and a facile pathway for electron transfer. With a one‐step immunoassay format, the antigen‐antibody complex was formed between the immobilized HRP‐anti‐AFP on the electrode and AFP in the sample. The formed immunocomplex was coated on the electrode surface, inhibited partly the active center of HRP, and decreased the catalytic reduction of HRP toward the enzyme substrate of H2O2. Under optimal conditions, the decrease of reduction currents was proportional to AFP concentration, and the dynamic range was 1.0–10 ng/mL with a relative‐low detection limit (LOD) of 0.7 ng/mL AFP. Intra‐ and inter‐assay coefficients of variation (CVs) were less than 10 %. The assay was evaluated for clinical human serum samples, including 8 (possible) patients with hepatocarcinoma and 3 normal human sera. Correct identification of negative/positive samples and perfect accordance with results from Elecsys 2010 Electrochemiluminescent Automatic Analyzer as a reference was obtained. Importantly, the graphene and nanogold‐based sensor provided a promising platform for the detection of other biocompounds, and could be further applied for development of other potential electrochemical bio/chemosensors.  相似文献   

6.
In this paper, multiwalled‐carbon‐nanotube‐based matrix solid‐phase dispersion coupled to HPLC with diode array detection was used to extract and determine honokiol and magnolol from Magnoliae Cortex. The extraction efficiency of the multiwalled‐carbon‐nanotube‐based matrix solid‐phase dispersion was studied and optimized as a function of the amount of dispersing sorbent, volume of elution solvent, and flow rate of elution solvent, with the aid of response surface methodology. An amount of 0.06 g of carboxyl‐modified multiwalled carbon nanotubes and 1.5 mL of methanol at a flow rate of 1.1 mL/min were selected. The method obtained good linearity (r2 > 0.9992) and precision (RSD < 4.7%) for honokiol and magnolol, with limits of detection of 0.045 and 0.087 μg/mL, respectively. The recoveries obtained from analyzing in triplicate spiked samples were determined to be from 90.23 to 101.10% and the RSDs from 3.5 to 4.8%. The proposed method that required less samples and reagents was simpler and faster than Soxhlet and maceration extraction methods. The optimized method was applied for analyzing five real samples collected from different cultivated areas.  相似文献   

7.
《Electrophoresis》2018,39(14):1771-1776
An ionic liquid‐based headspace in‐tube liquid‐phase microextraction (IL‐HS‐ITLPME) in‐line coupled with CE is proposed. The method is capable of quantifying trace amounts of phenols in environmental water samples. In the newly developed method, simply by placing a capillary injected with ionic liquids (IL) in the HS above the aqueous sample, volatile phenols were extracted into the IL acceptor phase in the capillary. After extraction, electrophoresis of the phenols in the capillary was carried out. Extraction parameters such as the extraction time, extraction temperature, ionic strength, volume of the sample solution, and IL types were systematically investigated. Under the optimized conditions, enrichment factors for four phenols were from 1510 to 1985. The proposed method provided a good linearity, low limits of detection (below 5.0 ng/mL), and good repeatability of the extractions (RSDs below 6.7%, n = 6). This method was then utilized to analyze two real environmental samples of Xiaoxi Lake and tap water, obtaining acceptable recoveries and precisions. Compared with the usual HS‐ITLPME for CE, IL‐HS‐ITLPME‐CE is a simple, low cost, fast, and environmentally friendly preconcentration technique.  相似文献   

8.
A high‐throughput electrochemical microimmunosensor for the detection of biomarkers for liver fibrosis was developed. The antibodies, hyaluronic acid binding protein (HABP), lamin antibody (a‐LN) and type IV‐collagen antibody (a‐IVC), are immobilized on different electrodes of the microelectrode array by copolymerizing into the partly insulated poly(o‐phenylenediamine) by means of cyclic voltammetry. Electrochemical detection of the corresponding antigen was based on the extent of electrode insulation toward a redox probe (ferrocenemethanol) solubilized in the electrolyte as a result of the formation of the antigen‐antibody complex at the electrode surface. The microimmunosensor exhibits enough sensitivity to detect the three biomarkers at a concentration level down to 3 ng/mL. The microimmunosensor has been applied to real samples, the results agree well with those obtained by radioimmunoassay (RIA). With the possibility of being portable and considering its ease of use, robustness, and simplicity, the microimmunosensor has great potential as a tool for the screening and early detection of liver fibrosis.  相似文献   

9.
An effective and simple method for polar phenols in water matrix was developed by using stir bar sorptive extraction (SBSE) based on a hydrophilic poly(vinylpyrrolididone‐divinylbenzene) (VPDB) monolithic material and HPLC analysis. To achieve optimum extraction performance for phenols, several parameters, including extraction and desorption time, desorption solvent, pH value, and ionic strength of sample matrix, were investigated. Under the optimized experimental conditions, eight phenols were directly enriched from water samples and analyzed by HPLC‐DAD. The detection limits (S/N = 3) and quantification limits (S/N = 10) of the proposed method for the target compounds were achieved within the range of 0.72–1.37 and 2.40–4.27 ng/mL from spiked water, respectively. Recoveries of eight phenolic compounds were found in the range of 55.2–95.9%. The calibration curves showed the linearity ranging from 5 to 150 ng/mL with linear regression coefficient R2 values above 0.98. Method repeatability presented as intra‐ and interday precisions were also found with the RSDs less than 4.10 and 7.61%, respectively. The distribution coefficients between VPDB and water (KVPDB/W) for phenolic compounds were also calculated and compared with KO/W. Finally, the proposed method was successfully applied to the determination of the target compounds in tap water, sea water and wastewater samples.  相似文献   

10.
An ionic liquid‐based surfactant combined with microwave‐assisted extraction method, followed by RP‐HPLC‐diode array detection (DAD) with a core shell column, was successfully applied in extracting and quantifying four major phloroglucinols from Dryopteris fragrans. Eight ionic liquids with different cation and anion were investigated, and 1‐octyl‐3‐methylimidazolium bromide presented the best relative extraction efficiency for four phloroglucinols. The optimum conditions of this method were as follows: ionic liquid concentration 0.75 M, liquid/solid ratio 12:1 mL/g, extraction time 7 min, extraction temperature 50°C, and irradiation power 600 W. The quality analytical parameters of the method were obtained based on the linearity, precision, accuracy, detection, and quantification limits. The recoveries were between 96.90 and 103.5% with standard deviations not higher than 4.7%. Compared with ionic liquid‐based heat reflux extraction, ultrasonic‐assisted extraction, negative‐pressure cavitation extraction, and conventional microwave‐assisted extraction, the relative extraction efficiencies of the proposed method for four phloroglucinols increased 1.5–40.4%. The method was successfully applied for the quantification of four major phloroglucinols from D. fragrans. All these results suggest that the developed method represents an excellent alternative for the extraction and quantification of phloroglucinols in other plant materials.  相似文献   

11.
A solvent‐free method that uses headspace solid‐phase microextraction and gas chromatography with flame ionization detection is proposed for the determination of lignin‐derived phenols in sediments. The extraction and derivatization conditions for the simultaneous analysis of acetosyringone, acetovanillone, syringaldehyde, vanillin, ferulic acid, syringic acid, vanillic acid, p‐hydroxybenzoic acid, and p‐coumaric acid were optimized using a central composite design. After optimization, the best results were obtained with the following conditions: exposure of the polyacrylate fiber to the headspace with 60 μL of N ,O‐bis(trimethylsilyl)trifluoroacetamide as a derivatizing agent for 15 min and then extraction in the headspace of 100 mg of sediment (previously spiked with lignin‐derived phenols) for 35 min. The accuracy of the method was estimated based on recovery tests at two concentration levels and by comparison with a high‐performance liquid chromatography method reported in the literature. Based on the t‐test with a confidence level of 95%, no statistical differences were observed. The detection and quantification limits for the target compounds varied according to their characteristics: values at the microgram per gram level for nonacid compounds and milligram per gram level for phenolic acids, due to the lower volatility of the derivatives.  相似文献   

12.
王树青  陈峻  林祥钦 《中国化学》2004,22(4):360-364
IntroductionAmperometricbiosensorofhydrogenperoxideisofpracticalimportancebecauseofitswideapplicationsinchemical,biological,clinical,environmentalandmanyotherfields.Forimprovementofsensor抯quality,vari-ouskindsofchemicalmodificationmethodshavebeendevelopedforreducingredoxoverpotentialsofH2O2atelectrodesurfaces,increasingthedetectionsensitivity,linearrange,stabilityandlivetime.Ithasbeenshownthattheuseofsub-micrometersizedmetalparticlessuchasPt-blackcansignificantlyimprovethequalityofthebiosens…  相似文献   

13.
《Electroanalysis》2004,16(9):730-735
Electrooxidation of thionine on screen‐printed carbon electrode gives rise to the modification of the surface with amino groups for the covalent immobilization of enzymes such as horseradish peroxidase (HRP). The biosensor was constructed using multilayer enzymes which covalently immobilized onto the surface of amino groups modified screen‐printed carbon electrode using glutaraldehyde as a bifunctional reagent. The multilayer assemble of HRP has been characterized with the cyclic voltammetry and the faradaic impedance spectroscopy. The H2O2 biosensor exhibited a fast response (2 s) and low detection limit (0.5 μM).  相似文献   

14.
A novel core–shell magnetic nano‐adsorbent with surface molecularly imprinted polymer coating was fabricated and then applied to dispersive micro‐solid‐phase extraction followed by determination of rhodamine 6G using high‐performance liquid chromatography. The molecularly imprinted polymer coating was prepared by copolymerization of dopamine and m‐aminophenylboronic acid (functional monomers), in the presence of rhodamine 6G (template). The selection of the suitable functional monomers was based on the interaction between different monomers and the template using the density functional theory. The ratios of the monomers to template were further optimized by an OA9 (34) orthogonal array design. The binding performances of the adsorbent were evaluated by static, kinetic, and selective adsorption experiments. The results reveal that the adsorbent possesses remarkable affinity and binding specificity for rhodamine 6G because of the enhanced Lewis acid‐base interaction between the B(Ш) embedded in the imprinted cavities and the template. The nano‐adsorbent was successfully applied to dispersive micro‐solid‐phase extraction coupled to high‐performance liquid chromatography for the trace determination of rhodamine 6G in samples with a detection limit of 2.7 nmol/L. Spiked recoveries ranged from 93.0–99.1, 89.5–92.7, and 86.9–105% in river water, matrimony vine and paprika samples, respectively, with relative standard deviations of less than 4.3%.  相似文献   

15.
本文以中性红为核,二氧化硅为壳,利用反相微乳液技术,通过正硅酸四乙酯的水解制备了掺杂有中性红的二氧化硅纳米粒子,并用TEM技术进行了表征。核中性红能够催化测定葡萄糖,乳酸和L-谷氨酸的反应,而壳二氧化硅不仅克服了电活性物质中性红易流失的缺点,且具有高的生物亲和性。分别与葡萄糖氧化酶、乳酸氧化酶以及L-谷氨酸氧化酶混合后,修饰在碳阵列电极表面。最后在该酶阵列电极表面滴加一层Nafion, 防止电活性物质抗坏血酸、尿酸等的干扰。该酶阵列传感器与流动注射分析技术(FIA)相结合,可应用于同时检测大鼠血样中的葡萄糖,乳酸和L-谷氨酸浓度。该方法无需通过传统的色谱柱的分离,大大简化了实验条件,为这一领域的研究提供了有效的分析方法。  相似文献   

16.
In the work, aminophenylboronic acid (APB)‐functionalized magnetic mesoporous silica, which holds the attractive features of high magnetic responsivity and large surface area, was developed to enrich glycopeptides. At first, magnetic mesoporous silica nanocomposites were prepared. And then, the nanocomposites were functioned with glycidoxypropyltrimethoxysilane (GLYMO) for boronic acid immobilization. Due to that the boronic acid group on the surface of magnetic mesoporous silica nanocomposites can form tight yet reversible covalent bond with glycopeptides containing cis‐1,2‐diols groups, the magnetic mesoporous silica nanocomposites were successfully applied to selective enrichment of glycopeptides. APB functionalized magnetic mesoporous silica was also demonstrated to have high selectivity for the glycopeptides in the presence of a 10‐fold excess bovine serum albumin (BSA) over horseradish peroxidase (HRP) in the tryptic digest. We also find that magnetic mesoporous silica has better sensitivity in HRP digest compared with that of commercial aminophenylboronic acid‐functionalized magnetic nanoparticles beads. The limit of detection for glycopeptides from glycoprotein HRP is about 0.01 ng/µL.  相似文献   

17.
Volatile phenols in the wastewater provide a basic parameter of the pollution. Spectrophotometric method based on the reactions of the individual phenols with 4‐aminoantipyrine in the presence of an oxidizing agent is the current official analytical method in many countries. In this paper, we propose a method for extracting the resultant colored dye with ionic liquid 1‐butyl‐3‐methylimidazolium hexafluorophosphate instead of chloroform. The results revealed excellent extraction efficiency, and the used ionic liquid could be regenerated easily. The method with small volume green reagent could be potentially applied in portable devices for in situ environmental analysis.  相似文献   

18.
An industrial MCM‐41‐miniaturized matrix solid‐phase dispersion extraction coupled with response surface methodology was explored to determine L‐epicatechin, typhaneoside, isorhamnetin‐3‐O‐neohespeidoside, naringenin, kaempferol, and isorhamnetin in Pollen typhae by ultra‐high performance liquid chromatography connected to a photodiode array detection. Several variables were optimized in detail, including mesh number of sieve, type of adsorbent, mass ratio of sample to adsorbent, grinding time, methanol concentration, and elution volume. Central composite design was applied to optimize the best conditions for the maximum yields of the total flavonoids. The results displayed a good linear relationship (R > 0.9992) and the recoveries ranged from 92.9 to 103% (RSD < 4.53%) of the six flavonoids. The optimal method with high efficiency and low consumption was obviously better than heating reflux and ultrasonic extraction. It was proven that the developed industrial MCM‐41‐miniaturized matrix solid‐phase dispersion extraction coupled with simple ultra‐high performance liquid chromatography method could be a rapid and efficient tool for extraction and determination of flavonoids in natural products.  相似文献   

19.
A rapid method combining microwave‐assisted extraction (MAE) and high‐speed counter‐current chromatography (HSCCC) was applied for preparative separation of six bioactive compounds including loganic acid ( I ), isoorientin‐4′‐O‐glucoside ( II ), 6′‐O‐β‐d ‐glucopyranosyl gentiopicroside ( III ), swertiamarin ( IV ), gentiopicroside ( V ), sweroside ( VI ) from traditional Tibetan medicine Gentiana crassicaulis Duthie ex Burk. MAE parameters were predicted by central composite design response surface methodology. That is, 5.0 g dried roots of G. crassicaulis were extracted with 50 mL 57.5% aqueous ethanol under 630 W for 3.39 min. The extract (gentian total glycosides) was separated by HSCCC with n‐butanol/ethyl acetate/methanol/1% acetic acid water (7.5:0.5:0.5:3.5, v/v/v/v) using upper phase mobile in tail‐to‐head elution mode. 16.3, 8.8, 12., 25.1, 40.7, and 21.8 mg of compounds I–VI were obtained with high purities in one run from 500 mg of original sample. The purities and identities of separated components were confirmed using HPLC with photo diode array detection and quadrupole TOF‐MS and NMR spectroscopy. The study reveals that response surface methodology is convenient and highly predictive for optimizing extraction process, MAE coupled with HSCCC could be an expeditious method for extraction and separation of phytochemicals from ethnomedicine.  相似文献   

20.
This paper describes a new method for detecting phenols, by reaction with Gibbs reagent to form indophenols, followed by mass spectrometric detection. Unlike the standard Gibbs reaction, which uses a colorometric approach, the use of mass spectrometry allows for simultaneous detection of differently substituted phenols. The procedure is demonstrated to work for a large variety of phenols without para‐substitution. With para‐substituted phenols, Gibbs products are still often observed, but the specific product depends on the substituent. For para groups with high electronegativity, such as methoxy or halogens, the reaction proceeds by displacement of the substituent. For groups with lower electronegativity, such as amino or alkyl groups, Gibbs products are observed that retain the substituent, indicating that the reaction occurs at the ortho or meta position. In mixtures of phenols, the relative intensities of the Gibbs products are proportional to the relative concentrations, and concentrations as low as 1 μmol/L can be detected. The method is applied to the qualitative analysis of commercial liquid smoke, and it is found that hickory and mesquite flavors have significantly different phenolic composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号