首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dimethyl heptalene‐4,5‐dicarboxylates
  • 1 The locants of heptalene itself are maintained throughout the whole work. See footnote 4 in [1] for reasoning.
  • undergo preferentially a Michael addition reaction at C(3) with α‐lithiated alkyl phenyl sulfones at temperatures below ?50°, leading to corresponding cis‐configured 3,4‐dihydroheptalene‐4,5‐dicarboxylates (cf. Table 1, Schemes 3 and 4). The corresponding heptalenofuran‐1‐one‐type pseudoesters of dimethyl heptalene‐4,5‐dicarboxylates (Scheme 5) react with [(phenylsulfonyl)methyl]lithium almost exclusively at C(1) of the furanone group (Scheme 6). In contrast to this expected behavior, the uptake of 1‐[phenylsulfonyl)ethyl]lithium occurs at C(5) of the heptalenofuran‐1‐ones as long as they carry a Me group at C(11) (Schemes 6 and 7). The 1,4‐ as well as the 1,6‐addition products eliminate, on treatment with MeONa/MeOH in THF, benzenesulfinate, thus leading to 3‐ and 4‐alkylated dimethyl heptalene‐4,5‐dicarboxylates, respectively (Schemes 813). The configuration of the addition reaction of the nucleophiles to the inherently chiral heptalenes is discussed in detail (cf. Schemes 1419) on the basis of a number of X‐ray crystal‐structure determinations as well as by studies of the temperature‐dependence of the 1H‐NMR spectra of the addition products.  相似文献   

    2.
    3,3‐Dialkyl‐4,5‐diphenyl‐3H‐pyrazoles undergo readily photoinduced electron transfer (PET) reaction with 2,4,6‐triphenylpyrylium tetrafluoroborate (TPP+) in acetonitrile to produce cyclopropenes and 2H‐pyrroles. During prolonged irradiation, the new ring‐closure products derived from 2H‐pyrroles as the secondary photoproducts are also produced. However, the corresponding ester analog exhibits different behavior to obtain the cyclopropene as the primary photoproduct and a [2+2] dimer of the cyclopropene as the secondary photoproduct. A rationale for the different behavior is offered.  相似文献   

    3.
    Addition reactions of acid chlorides with various 2‐substituted 4,5‐dihydro‐4,4‐dimethyl‐5‐(methylsulfanyl)‐1,3‐thiazoles under basic conditions were studied. Two kinds of products were obtained from these additions, β‐lactams and non‐β‐lactam adducts. When the reaction was carried out with 4,5‐dihydro‐1,3‐thiazoles with a Ph substituent at C(2), the reaction proceeded via formal [2+2] cycloaddition and led to the correspoding β‐lactam. On the other hand, acid chlorides and 4,5‐dihydro‐1,3‐thiazoles bearing an α‐H‐atom at the C(2)‐substituent underwent C(α)‐ and/or N‐addition reactions and furnished non‐β‐lactam adducts, i.e., C(α)‐ and/or N‐acylated 1,3‐thiazolidines. The attempted transformations of sulfonyl esters of exo‐6‐hydroxy penams to endo‐6‐azido penams failed, although they were successful with mono‐β‐lactams under the same conditions.  相似文献   

    4.
    The reduction of heptalene diester 1 with diisobutylaluminium hydride (DIBAH) in THF gave a mixture of heptalene‐1,2‐dimethanol 2a and its double‐bond‐shift (DBS) isomer 2b (Scheme 3). Both products can be isolated by column chromatography on silica gel. The subsequent chlorination of 2a or 2b with PCl5 in CH2Cl2 led to a mixture of 1,2‐bis(chloromethyl)heptalene 3a and its DBS isomer 3b . After a prolonged chromatographic separation, both products 3a and 3b were obtained in pure form. They crystallized smoothly from hexane/Et2O 7 : 1 at low temperature, and their structures were determined by X‐ray crystal‐structure analysis (Figs. 1 and 2). The nucleophilic exchange of the Cl substituents of 3a or 3b by diphenylphosphino groups was easily achieved with excess of (diphenylphospino)lithium (=lithium diphenylphosphanide) in THF at 0° (Scheme 4). However, the purification of 4a / 4b was very difficult since these bis‐phosphines decomposed on column chromatography on silica gel and were converted mostly by oxidation by air to bis(phosphine oxides) 5a and 5b . Both 5a and 5b were also obtained in pure form by reaction of 3a or 3b with (diphenylphosphinyl)lithium (=lithium oxidodiphenylphospanide) in THF, followed by column chromatography on silica gel with Et2O. Carboxaldehydes 7a and 7b were synthesized by a disproportionation reaction of the dimethanol mixture 2a / 2b with catalytic amounts of TsOH. The subsequent decarbonylation of both carboxaldehydes with tris(triphenylphosphine)rhodium(1+) chloride yielded heptalene 8 in a quantitative yield. The reaction of a thermal‐equilibrium mixture 3a / 3b with the borane adduct of (diphenylphosphino)lithium in THF at 0° gave 6a and 6b in yields of 5 and 15%, respectively (Scheme 4). However, heating 6a or 6b in the presence of 1,4‐diazabicyclo[2.2.2]octane (DABCO) in toluene, generated both bis‐phosphine 4a and its DBS isomer 4b which could not be separated. The attempt at a conversion of 3a or 3b into bis‐phosphines 4a or 4b by treatment with t‐BuLi and Ph2PCl also failed completely. Thus, we returned to investigate the antipodes of the dimethanols 2a, 2b , and of 8 that can be separated on an HPLC Chiralcel‐OD column. The CD spectra of optically pure (M)‐ and (P)‐configurated heptalenes 2a, 2b , and 8 were measured (Figs. 4, 5, and 9).  相似文献   

    5.
    The title compound, C21H28O8, crystallizes with two independent mol­ecules, each with a crystallographic twofold axis passing through the central CH2 group. The two mol­ecules have different orientations of the terminal benzyl groups. The average C—O bond length in the polyoxymethyl­ene helix, corrected for librational motion, is 1.419 Å. The mol­ecules are connected into layers by inter­molecular C—H⋯O and C—H⋯π(phenyl) inter­actions.  相似文献   

    6.
    A site‐selective hydroxylative dearomatization of 2‐substituted phenols to either 1,2‐benzoquinols or their cyclodimers, catalyzed by 4,5‐dimethyl‐2‐iodoxybenzenesulfonic acid with Oxone, has been developed. Natural products such as biscarvacrol and lacinilene C methyl ether could be synthesized efficiently under mild reaction conditions. Furthermore, both the reaction rate and site selectivity could be further improved by the introduction of a trialkylsilylmethyl substituent at the 2‐position of phenols. The corresponding 1,2‐quinols could be transformed into various useful structural motifs by [4+2] cycloaddition cascade reactions.  相似文献   

    7.
    Protocatechuic acid esters (= 3,4‐dihydroxybenzoates) scavenge ca. 5 equiv. of radical in alcoholic solvents, whereas they consume only 2 equiv. of radical in nonalcoholic solvents. While the high radical‐scavenging activity of protocatechuic acid esters in alcoholic solvents as compared to that in nonalcoholic solvents is due to a nucleophilic addition of an alcohol molecule at C(2) of an intermediate o‐quinone structure, thus regenerating a catechol (= benzene‐1,2‐diol) structure, it is still unclear why protocatechuic acid esters scavenge more than 4 equiv. of radical (C(2) refers to the protocatechuic acid numbering). Therefore, to elucidate the oxidation mechanism beyond the formation of the C(2) alcohol adduct, 3,4‐dihydroxy‐2‐methoxybenzoic acid methyl ester ( 4 ), the C(2) MeOH adduct, which is an oxidation product of methyl protocatechuate ( 1 ) in MeOH, was oxidized by the DPPH radical (= 2,2‐diphenyl‐1‐picrylhydrazyl) or o‐chloranil (= 3,4,5,6‐tetrachlorocyclohexa‐3,5‐diene‐1,2‐dione) in CD3OD/(D6)acetone 3 : 1). The oxidation mixtures were directly analyzed by NMR. Oxidation with both the DPPH radical and o‐chloranil produced a C(2),C(6) bis‐methanol adduct ( 7 ), which could scavenge additional 2 equiv. of radical. Calculations of LUMO electron densities of o‐quinones corroborated the regioselective nucleophilic addition of alcohol molecules with o‐quinones. Our results strongly suggest that the regeneration of a catechol structure via a nucleophilic addition of an alcohol molecule with a o‐quinone is a key reaction for the high radical‐scavenging activity of protocatechuic acid esters in alcoholic solvents.  相似文献   

    8.
    7‐(4‐Fluorophenyl) and 7‐phenyl‐substituted 1,3‐diphenyl‐1,4‐dihydro‐1,2,4‐benzotriazin‐4‐yl radicals were characterized by X‐ray diffraction analysis and variable‐temperature magnetic susceptibility studies. The radicals pack in 1D π stacks of equally spaced slipped radicals with interplanar distances of 3.59 and 3.67 Å and longitudinal angles of 40.97 and 43.47°, respectively. Magnetic‐susceptibility studies showed that both radicals exhibit antiferromagnetic interactions. Fitting the magnetic data revealed that the behavior is consistent with 1D regular linear antiferromagnetic chain with J=?12.9 cm?1, zJ′=?0.4 cm?1, g=2.0069 and J=?11.8 cm?1, zJ′=?6.5 cm?1, g=2.0071, respectively. Magnetic‐exchange interactions in benzotriazinyl radicals are sensitive to the degree of slippage, and inter‐radical separation and subtle changes in structure alter the fine balance between ferro‐ and antiferromagnetic interactions.  相似文献   

    9.
    A one‐pot and efficient synthesis of substituted N‐dichloroacetyl‐4,5‐dimethyl‐1,3‐oxazolidines utilizing the reaction of alkamine with aldehyde or ketone in refluxing benzene under microwave irradiation was described. The N‐acylation was followed with dichloroacetyl chloride and NaOH acting as the attaching acid agent. All compounds were characterized by IR, 1H NMR, 13C NMR, and element analysis. Additionally, the absolute configuration of 4a was determined by X‐ray crystallography. All the compounds were tested for their herbicide safeners activity of protecting the maize from the injury of acetochlor.  相似文献   

    10.
    In a continuation of our research on new chromophores for photoinitiators (PIs), we investigated a triple‐bond‐containing benzophenone derivative. 1,5‐Diphenyl‐1,4‐pentadiyn‐3‐one ( 2 ) was prepared from phenylacetylene and ethyl formate by a one‐pot reaction. Differential scanning photocalorimetry experiments in lauryl acrylate of 2 showed surprisingly high activity for the double‐bond conversion and rate of polymerization at the lowest PI concentrations and even without any coinitiator. By the application of monomers with abstractable hydrogens, significant improvement in the photoreactivity was observed. Ultraviolet–visible spectroscopy revealed strong absorption up to 350 nm. Steady‐state photolysis experiments proved that the photochemistry of this compound was faster than that of benzophenone. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 101–111, 2005  相似文献   

    11.
    12.
    13.
    14.
    An interesting case of `halogen‐bonding‐promoted' crystal structure architecture is presented. The two title compounds, C8H8Br2O2 and C8H8I2O2, have almost indistinguishable molecular structures but very different spatial organization, and this is mainly due to differences in the halogen‐bonding interactions in which the different species present, i.e. Br and I, take part. The dibromo structure exhibits a π‐bonded columnar array involving all four independent molecules in the asymmetric unit, with intercolumnar interactions governed by C—Br...Br—C links and with no C—Br...O/N interactions present. In the diiodo structure, instead, the C—I...O synthon prevails, defining linear chains, in turn interlinked by C—I...I—C interactions.  相似文献   

    15.
    16.
    Synthesis of novel imidazopyrimidines has been reported. These systems contain carbethoxy group at C5 of pyrimidine and bromine at C2 of imidazole. Reactivity of these two groups was studied, and the mobility of the carbethoxy group was confirmed by tracing the formation of the amide product and also with isolation of alkyl analogs while bromine did not react with N‐nucleophiles under various reaction conditions employed. New conjugates combine the properties of dihydropyrimidine and imidazole and therefore lead to the expansion of original properties of each heterocyclic moiety within the system.  相似文献   

    17.
    The title compound, C11H8N2O, has two crystallographically independent mol­ecules in the crystal. Each mol­ecule is basically planar except for the O atom. The two N atoms in the mol­ecule show different behaviour as hydrogen‐bonding acceptors. One of them is involved in intermolecular O—H?N hydrogen bonds which stabilize the crystal packing.  相似文献   

    18.
    The six‐membered B2H4 ring of the title compound, C36H30B2N8, adopts a slightly distorted boat conformation, with the terminal B substituents in a trans orientation. One 3‐­phenyl­pyrazolyl group is in an equatorial position, whereas the second is in an axial position with respect to the plane defined by the B atoms.  相似文献   

    19.
    The isothiazolium salts 10 , easily accessible by cyclocondensation of the thiocyanates 8 with the anilines 9 , yielded with H2O2 as the oxidant the first stable hydroperoxides of the 2‐aryl‐2,3‐dihydroisothiazole 1‐oxides rac‐cis‐ 13 , the 1,1‐dioxides 15 , and their reduced 3‐hydroxy derivatives rac‐cis‐ 14 and 16 , respectively. The oxidation of 10 to new isothiazol‐3(2H)‐one 1,1‐dioxides ( 17 ) is also described. For the first time, an aryl‐bridged bis[isothiazolium salt] 11 was synthesized and oxidized.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号