首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents a numerical method for solving the two‐dimensional unsteady incompressible Navier–Stokes equations in a vorticity–velocity formulation. The method is applicable for simulating the nonlinear wave interaction in a two‐dimensional boundary layer flow. It is based on combined compact difference schemes of up to 12th order for discretization of the spatial derivatives on equidistant grids and a fourth‐order five‐ to six‐alternating‐stage Runge–Kutta method for temporal integration. The spatial and temporal schemes are optimized together for the first derivative in a downstream direction to achieve a better spectral resolution. In this method, the dispersion and dissipation errors have been minimized to simulate physical waves accurately. At the same time, the schemes can efficiently suppress numerical grid‐mesh oscillations. The results of test calculations on coarse grids are in good agreement with the linear stability theory and comparable with other works. The accuracy and the efficiency of the current code indicate its potential to be extended to three‐dimensional cases in which full boundary layer transition happens. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, five different algorithms are presented for the simulation of low Mach flows with large temperature variations, based on second‐order central‐difference or fourth‐order compact spatial discretization and a pressure projection‐type method. A semi‐implicit three‐step Runge–Kutta/Crank–Nicolson or second‐order iterative scheme is used for time integration. The different algorithms solve the coupled set of governing scalar equations in a decoupled segregate manner. In the first algorithm, a temperature equation is solved and density is calculated from the equation of state, while the second algorithm advances the density using the differential form of the equation of state. The third algorithm solves the continuity equation and the fourth algorithm solves both the continuity and enthalpy equation in conservative form. An iterative decoupled algorithm is also proposed, which allows the computation of the fully coupled solution. All five algorithms solve the momentum equation in conservative form and use a constant‐ or variable‐coefficient Poisson equation for the pressure. The efficiency of the fourth‐order compact scheme and the performances of the decoupling algorithms are demonstrated in three flow problems with large temperature variations: non‐Boussinesq natural convection, channel flow instability, flame–vortex interaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The development of a numerical scheme for non‐hydrostatic free surface flows is described with the objective of improving the resolution characteristics of existing solution methods. The model uses a high‐order compact finite difference method for spatial discretization on a collocated grid and the standard, explicit, single step, four‐stage, fourth‐order Runge–Kutta method for temporal discretization. The Cartesian coordinate system was used. The model requires the solution of two Poisson equations at each time‐step and tridiagonal matrices for each derivative at each of the four stages in a time‐step. Third‐ and fourth‐order accurate boundaries for the flow variables have been developed including the top non‐hydrostatic pressure boundary. The results demonstrate that numerical dissipation which has been a problem with many similar models that are second‐order accurate is practically eliminated. A high accuracy is obtained for the flow variables including the non‐hydrostatic pressure. The accuracy of the model has been tested in numerical experiments. In all cases where analytical solutions are available, both phase errors and amplitude errors are very small. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents various finite difference schemes and compare their ability to simulate instability waves in a given flow field. The governing equations for two‐dimensional, incompressible flows were solved in vorticity–velocity formulation. Four different space discretization schemes were tested, namely, a second‐order central differences, a fourth‐order central differences, a fourth‐order compact scheme and a sixth‐order compact scheme. A classic fourth‐order Runge–Kutta scheme was used in time. The influence of grid refinement in the streamwise and wall normal directions were evaluated. The results were compared with linear stability theory for the evolution of small‐amplitude Tollmien–Schlichting waves in a plane Poiseuille flow. Both the amplification rate and the wavenumber were considered as verification parameters, showing the degree of dissipation and dispersion introduced by the different numerical schemes. The results confirmed that high‐order schemes are necessary for studying hydrodynamic instability problems by direct numerical simulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The objective of this paper is the development and assessment of a fourth‐order compact scheme for unsteady incompressible viscous flows. A brief review of the main developments of compact and high‐order schemes for incompressible flows is given. A numerical method is then presented for the simulation of unsteady incompressible flows based on fourth‐order compact discretization with physical boundary conditions implemented directly into the scheme. The equations are discretized on a staggered Cartesian non‐uniform grid and preserve a form of kinetic energy in the inviscid limit when a skew‐symmetric form of the convective terms is used. The accuracy and efficiency of the method are demonstrated in several inviscid and viscous flow problems. Results obtained with different combinations of second‐ and fourth‐order spatial discretizations and together with either the skew‐symmetric or divergence form of the convective term are compared. The performance of these schemes is further demonstrated by two challenging flow problems, linear instability in plane channel flow and a two‐dimensional dipole–wall interaction. Results show that the compact scheme is efficient and that the divergence and skew‐symmetric forms of the convective terms produce very similar results. In some but not all cases, a gain in accuracy and computational time is obtained with a high‐order discretization of only the convective and diffusive terms. Finally, the benefits of compact schemes with respect to second‐order schemes is discussed in the case of the fully developed turbulent channel flow. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
We present a compact finite differences method for the calculation of two‐dimensional viscous flows in biological fluid dynamics applications. This is achieved by using body‐forces that allow for the imposition of boundary conditions in an immersed moving boundary that does not coincide with the computational grid. The unsteady, incompressible Navier–Stokes equations are solved in a Cartesian staggered grid with fourth‐order Runge–Kutta temporal discretization and fourth‐order compact schemes for spatial discretization, used to achieve highly accurate calculations. Special attention is given to the interpolation schemes on the boundary of the immersed body. The accuracy of the immersed boundary solver is verified through grid convergence studies. Validation of the method is done by comparison with reference experimental results. In order to demonstrate the application of the method, 2D small insect hovering flight is calculated and compared with available experimental and computational results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A fourth‐order accurate solution method for the three‐dimensional Helmholtz equations is described that is based on a compact finite‐difference stencil for the Laplace operator. Similar discretization methods for the Poisson equation have been presented by various researchers for Dirichlet boundary conditions. Here, the complicated issue of imposing Neumann boundary conditions is described in detail. The method is then applied to model Helmholtz problems to verify the accuracy of the discretization method. The implementation of the solution method is also described. The Helmholtz solver is used as the basis for a fourth‐order accurate solver for the incompressible Navier–Stokes equations. Numerical results obtained with this Navier–Stokes solver for the temporal evolution of a three‐dimensional instability in a counter‐rotating vortex pair are discussed. The time‐accurate Navier–Stokes simulations show the resolving properties of the developed discretization method and the correct prediction of the initial growth rate of the three‐dimensional instability in the vortex pair. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
A high‐order accurate solution method for complex geometries is developed for two‐dimensional flows using the stream function–vorticity formulation. High‐order accurate spectrally optimized compact schemes along with appropriate boundary schemes are used for spatial discretization while a two‐level backward Euler implicit scheme is used for the time integration. The linear system of equations for stream function and vorticity are solved by an inner iteration while contravariant velocities constitute outer iterations. The effect of curvilinear grids on the solution accuracy is studied. The method is used to compute Cartesian and inclined driven cavity, flow in a triangular cavity and viscous flow in constricted channel. Benchmark‐like accuracy is obtained in all the problems with fewer grid points compared to reported studies. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
A fourth‐order compact finite difference scheme on the nine‐point 2D stencil is formulated for solving the steady‐state Navier–Stokes/Boussinesq equations for two‐dimensional, incompressible fluid flow and heat transfer using the stream function–vorticity formulation. The main feature of the new fourth‐order compact scheme is that it allows point‐successive overrelaxation (SOR) or point‐successive underrelaxation iteration for all Rayleigh numbers Ra of physical interest and all Prandtl numbers Pr attempted. Numerical solutions are obtained for the model problem of natural convection in a square cavity with benchmark solutions and compared with some of the accurate results available in the literature. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
The study of an under‐expanded supersonic jet impinging on a flat plate by using large‐eddy simulation is reported. A third‐order upwind compact difference and a fourth‐order symmetric compact scheme are employed to discretize the nondimensional axisymmetric compressible Favre‐filtered Navier–Stokes equations in space, whereas the third‐order Runge–Kutta method with the total variation diminishing property is adopted to deal with the temporal discretization. The numerical simulation successfully captures the shock wave and vortex structures with different scales in the flow field. Waves with high and low frequencies traveling forward and reflecting back, and sound sources in different locations can be observed. By comparison with the frequency of the impinging tone from the experiment, it can be deduced that the change of pressure and swirling strength in the shear layer, pressure change on the impinging plate, and vortex merging in the jet shear layer are interdependent with the impinging tone. The effects of nozzle lip thickness on the impinging jet flow field have been investigated. The results show that the values of pressure fluctuation and vortex swirling strength in the shear layer near the nozzle have an extremum with the variation of the nozzle lip thickness. The results provide a theoretical foundation for the design of supersonic nozzles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A high‐order compact finite‐difference lattice Boltzmann method (CFDLBM) is proposed and applied to accurately compute steady and unsteady incompressible flows. Herein, the spatial derivatives in the lattice Boltzmann equation are discretized by using the fourth‐order compact FD scheme, and the temporal term is discretized with the fourth‐order Runge–Kutta scheme to provide an accurate and efficient incompressible flow solver. A high‐order spectral‐type low‐pass compact filter is used to stabilize the numerical solution. An iterative initialization procedure is presented and applied to generate consistent initial conditions for the simulation of unsteady flows. A sensitivity study is also conducted to evaluate the effects of grid size, filtering, and procedure of boundary conditions implementation on accuracy and convergence rate of the solution. The accuracy and efficiency of the proposed solution procedure based on the CFDLBM method are also examined by comparison with the classical LBM for different flow conditions. Two test cases considered herein for validating the results of the incompressible steady flows are a two‐dimensional (2‐D) backward‐facing step and a 2‐D cavity at different Reynolds numbers. Results of these steady solutions computed by the CFDLBM are thoroughly compared with those of a compact FD Navier–Stokes flow solver. Three other test cases, namely, a 2‐D Couette flow, the Taylor's vortex problem, and the doubly periodic shear layers, are simulated to investigate the accuracy of the proposed scheme in solving unsteady incompressible flows. Results obtained for these test cases are in good agreement with the analytical solutions and also with the available numerical and experimental results. The study shows that the present solution methodology is robust, efficient, and accurate for solving steady and unsteady incompressible flow problems even at high Reynolds numbers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This work is devoted to the application of the super compact finite difference method (SCFDM) and the combined compact finite difference method (CCFDM) for spatial differencing of the spherical shallow water equations in terms of vorticity, divergence, and height. The fourth‐order compact, the sixth‐order and eighth‐order SCFDM, and the sixth‐order and eighth‐order CCFDM schemes are used for the spatial differencing. To advance the solution in time, a semi‐implicit Runge–Kutta method is used. In addition, to control the nonlinear instability, an eighth‐order compact spatial filter is employed. For the numerical solution of the elliptic equations in the problem, a direct hybrid method, which consists of a high‐order compact scheme for spatial differencing in the latitude coordinate and a fast Fourier transform in longitude coordinate, is utilized. The accuracy and convergence rate for all methods are verified against exact analytical solutions. Qualitative and quantitative assessments of the results for an unstable barotropic mid‐latitude zonal jet employed as an initial condition are addressed. It is revealed that the sixth‐order and eighth‐order CCFDMs and SCFDMs lead to a remarkable improvement of the solution over the fourth‐order compact method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Herein, the modified Lagrangian vortex method (LVM), a hybrid analytical‐numerical algorithm per se, is devised to simulate the process of vortex formation and shedding from the sharp edge of a zero‐thickness vertical plate under linear water‐wave attack. Application of the Helmholtz decomposition facilitates a convenient switch between the inviscid‐ and viscous‐flow models, thereby enabling easy incorporation of vorticity effects into the potential‐flow calculations for the viscous‐dominated region. In evaluating the potential‐flow component, making good use of the quickly convergent technique with singular basis functions, correctly capturing the singular behavior in velocity fields near the tip of the plate, leads to a considerable reduction of computational burdens and to 12‐decimal‐place accuracy. The viscous correction is carried out via the meshless LVM with improved boundary conditions. Comparisons with previously published results show good agreement. Simulations of vortex generation and evolution illuminate the ability of the present method, and provide a supplement to pertinent experimental works. The hybrid scheme proposed herein allows flexibility for the former LVM and convenience in the code development. Such a compromise fits particularly well for the high‐resolution modeling of sharp‐edged vortex shedding without heavy numerical developments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A recently developed asymmetric implicit fifth‐order scheme with acoustic upwinding for the spatial discretization for the characteristic waves is applied to the fully compressible, viscous and non‐stationary Navier–Stokes equations for sub‐ and super‐sonic, mildly turbulent, channel flow (Reτ=360). For a Mach number of 0.1, results are presented for uniform (323, 643 and 1283) and non‐uniform (expanding wall‐normal, 323 and 643) grids and compared to the (incompressible) reference solution found in (J. Fluid. Mech. 1987; 177 :133–166). The results for uniform grids on 1283 and 643 nodes show high resemblance with the reference solution. Expanding grids are applied on 643‐ and 323‐node grids. The capability of the proposed technique to solve compressible flow is first demonstrated by increasing the Mach number to 0.3, 0.6 and 0.9 for isentropic flow on the uniform 643‐grid. Next, the flow speed is increased to Ma=2. The results for the isothermal‐wall supersonic flows give very good agreement with known literature results. The velocity field, the temperature and their fluctuations are well resolved. This means that in all presented (sub‐ and super‐sonic) cases, the combination of acoustic upwinding and the asymmetric high‐order scheme provides sufficient high wave‐number damping and low wave‐number accuracy to give numerically stable and accurate results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the flow/acoustics splitting method for predicting flow‐generated noise is further developed by introducing high‐order finite difference schemes. The splitting method consists of dividing the acoustic problem into a viscous incompressible flow part and an inviscid acoustic part. The incompressible flow equations are solved by a second‐order finite volume code EllipSys2D/3D. The acoustic field is obtained by solving a set of acoustic perturbation equations forced by flow quantities. The incompressible pressure and velocity form the input to the acoustic equations. The present work is an extension of our acoustics solver, with the introduction of high‐order schemes for spatial discretization and a Runge–Kutta scheme for time integration. To achieve low dissipation and dispersion errors, either Dispersion‐Relation‐Preserving (DRP) schemes or optimized compact finite difference schemes are used for the spatial discretizations. Applications and validations of the new acoustics solver are presented for benchmark aeroacoustic problems and for flow over an NACA 0012 airfoil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
High‐speed compressible turbulent flows typically contain discontinuities and have been widely modeled using Weighted Essentially Non‐Oscillatory (WENO) schemes due to their high‐order accuracy and sharp shock capturing capability. However, such schemes may damp the small scales of turbulence and result in inaccurate solutions in the context of turbulence‐resolving simulations. In this connection, the recently developed Targeted Essentially Non‐Oscillatory (TENO) schemes, including adaptive variants, may offer significant improvements. The present study aims to quantify the potential of these new schemes for a fully turbulent supersonic flow. Specifically, DNS of a compressible turbulent channel flow with M = 1.5 and Reτ = 222 is conducted using OpenSBLI, a high‐order finite difference computational fluid dynamics framework. This flow configuration is chosen to decouple the effect of flow discontinuities and turbulence and focus on the capability of the aforementioned high‐order schemes to resolve turbulent structures. The effect of the spatial resolution in different directions and coarse grid implicit LES are also evaluated against the WALE LES model. The TENO schemes are found to exhibit significant performance improvements over the WENO schemes in terms of the accuracy of the statistics and the resolution of the three‐dimensional vortical structures. The sixth‐order adaptive TENO scheme is found to produce comparable results to those obtained with nondissipative fourth‐ and sixth‐order central schemes and reference data obtained with spectral methods. Although the most computationally expensive scheme, it is shown that this adaptive scheme can produce satisfactory results if used as an implicit LES model.  相似文献   

17.
A new fourth‐order compact formulation for the steady 2‐D incompressible Navier–Stokes equations is presented. The formulation is in the same form of the Navier–Stokes equations such that any numerical method that solve the Navier–Stokes equations can easily be applied to this fourth‐order compact formulation. In particular, in this work the formulation is solved with an efficient numerical method that requires the solution of tridiagonal systems using a fine grid mesh of 601 × 601. Using this formulation, the steady 2‐D incompressible flow in a driven cavity is solved up to Reynolds number with Re = 20 000 fourth‐order spatial accuracy. Detailed solutions are presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
This paper combines the pseudo‐compressibility procedure, the preconditioning technique for accelerating the time marching for stiff hyperbolic equations, and high‐order accurate central compact scheme to establish the code for efficiently and accurately solving incompressible flows numerically based on the finite difference discretization. The spatial scheme consists of the sixth‐order compact scheme and 10th‐order numerical filter operator for guaranteeing computational stability. The preconditioned pseudo‐compressible Navier–Stokes equations are marched temporally using the implicit lower–upper symmetric Gauss–Seidel time integration method, and the time accuracy is improved by the dual‐time step method for the unsteady problems. The efficiency and reliability of the present procedure are demonstrated by applications to Taylor decaying vortices phenomena, double periodic shear layer rolling‐up problem, laminar flow over a flat plate, low Reynolds number unsteady flow around a circular cylinder at Re = 200, high Reynolds number turbulence flow past the S809 airfoil, and the three‐dimensional flows through two 90°curved ducts of square and circular cross sections, respectively. It is found that the numerical results of the present algorithm are in good agreement with theoretical solutions or experimental data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A finite difference method is presented for solving the 3D Navier–Stokes equations in vorticity–velocity form. The method involves solving the vorticity transport equations in ‘curl‐form’ along with a set of Cauchy–Riemann type equations for the velocity. The equations are formulated in cylindrical co‐ordinates and discretized using a staggered grid arrangement. The discretized Cauchy–Riemann type equations are overdetermined and their solution is accomplished by employing a conjugate gradient method on the normal equations. The vorticity transport equations are solved in time using a semi‐implicit Crank–Nicolson/Adams–Bashforth scheme combined with a second‐order accurate spatial discretization scheme. Special emphasis is put on the treatment of the polar singularity. Numerical results of axisymmetric as well as non‐axisymmetric flows in a pipe and in a closed cylinder are presented. Comparison with measurements are carried out for the axisymmetric flow cases. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
The present study addresses the capability of a large set of shock‐capturing schemes to recover the basic interactions between acoustic, vorticity and entropy in a direct numerical simulation (DNS) framework. The basic dispersive and dissipative errors are first evaluated by considering the advection of a Taylor vortex in a uniform flow. Two transonic cases are also considered. The first one consists of the interaction between a temperature spot and a weak shock. This test emphasizes the capability of the schemes to recover the production of vorticity through the baroclinic process. The second one consists of the interaction of a Taylor vortex with a weak shock, corresponding to the framework of the linear theory of Ribner. The main process in play here is the production of an acoustic wave. The results obtained by using essentially non‐oscillatory (ENO), total variation diminishing (TVD), compact‐TVD and MUSCL schemes are compared with those obtained by means of a sixth‐order accurate Hermitian scheme, considered as reference. The results are as follows; the ENO schemes agree pretty well with the reference scheme. The second‐order accurate Upwind‐TVD scheme exhibits a strong numerical diffusion, while the MUSCL scheme behavior is very sensitive to the value on the parameter β in the limiter function minmod. The compact‐TVD schemes do not yield improvement over the standard TVD schemes. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号