首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Classical semi‐implicit backward Euler/Adams–Bashforth time discretizations of the Navier–Stokes equations induce, for high‐Reynolds number flows, severe restrictions on the time step. Such restrictions can be relaxed by using semi‐Lagrangian schemes essentially based on splitting the full problem into an explicit transport step and an implicit diffusion step. In comparison with the standard characteristics method, the semi‐Lagrangian method has the advantage of being much less CPU time consuming where spectral methods are concerned. This paper is devoted to the comparison of the ‘semi‐implicit’ and ‘semi‐Lagrangian’ approaches, in terms of stability, accuracy and computational efficiency. Numerical results on the advection equation, Burger's equation and finally two‐ and three‐dimensional Navier–Stokes equations, using spectral elements or a collocation method, are provided. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents the optimization of unsteady Navier–Stokes flows using the variational level set method. The solid–liquid interface is expressed by the level set function implicitly, and the fluid velocity is constrained to be zero in the solid domain. An optimization problem, which is constrained by the Navier–Stokes equations and a fluid volume constraint, is analyzed by the Lagrangian multiplier based adjoint approach. The corresponding continuous adjoint equations and the shape sensitivity are derived. The level set function is evolved by solving the Hamilton–Jacobian equation with the upwind finite difference method. The optimization method can be used to design channels for flows with or without body forces. The numerical examples demonstrate the feasibility and robustness of this optimization method for unsteady Navier–Stokes flows.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A semi‐implicit three‐step Runge–Kutta scheme for the unsteady incompressible Navier–Stokes equations with third‐order accuracy in time is presented. The higher order of accuracy as compared to the existing semi‐implicit Runge–Kutta schemes is achieved due to one additional inversion of the implicit operator I‐τγL, which requires inversion of tridiagonal matrices when using approximate factorization method. No additional solution of the pressure‐Poisson equation or evaluation of Navier–Stokes operator is needed. The scheme is supplied with a local error estimation and time‐step control algorithm. The temporal third‐order accuracy of the scheme is proved analytically and ascertained by analysing both local and global errors in a numerical example. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
A new fourth‐order compact formulation for the steady 2‐D incompressible Navier–Stokes equations is presented. The formulation is in the same form of the Navier–Stokes equations such that any numerical method that solve the Navier–Stokes equations can easily be applied to this fourth‐order compact formulation. In particular, in this work the formulation is solved with an efficient numerical method that requires the solution of tridiagonal systems using a fine grid mesh of 601 × 601. Using this formulation, the steady 2‐D incompressible flow in a driven cavity is solved up to Reynolds number with Re = 20 000 fourth‐order spatial accuracy. Detailed solutions are presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Two methods for coupling the Reynolds‐averaged Navier–Stokes equations with the qω turbulence model equations on structured grid systems have been studied; namely a loosely coupled method and a strongly coupled method. The loosely coupled method first solves the Navier–Stokes equations with the turbulent viscosity fixed. In a subsequent step, the turbulence model equations are solved with all flow quantities fixed. On the other hand, the strongly coupled method solves the Reynolds‐averaged Navier–Stokes equations and the turbulence model equations simultaneously. In this paper, numerical stabilities of both methods in conjunction with the approximated factorization‐alternative direction implicit method are analysed. The effect of the turbulent kinetic energy terms in the governing equations on the convergence characteristics is also studied. The performance of the two methods is compared for several two‐ and three‐dimensional problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
In the following paper, we present a consistent Newton–Schur (NS) solution approach for variational multiscale formulations of the time‐dependent Navier–Stokes equations in three dimensions. The main contributions of this work are a systematic study of the variational multiscale method for three‐dimensional problems and an implementation of a consistent formulation suitable for large problems with high nonlinearity, unstructured meshes, and non‐symmetric matrices. In addition to the quadratic convergence characteristics of a Newton–Raphson‐based scheme, the NS approach increases computational efficiency and parallel scalability by implementing the tangent stiffness matrix in Schur complement form. As a result, more computations are performed at the element level. Using a variational multiscale framework, we construct a two‐level approach to stabilizing the incompressible Navier–Stokes equations based on a coarse and fine‐scale subproblem. We then derive the Schur complement form of the consistent tangent matrix. We demonstrate the performance of the method for a number of three‐dimensional problems for Reynolds number up to 1000 including steady and time‐dependent flows. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A three‐dimensional numerical model is developed for incompressible free surface flows. The model is based on the unsteady Reynolds‐averaged Navier–Stokes equations with a non‐hydrostatic pressure distribution being incorporated in the model. The governing equations are solved in the conventional sigma co‐ordinate system, with a semi‐implicit time discretization. A fractional step method is used to enable the pressure to be decomposed into its hydrostatic and hydrodynamic components. At every time step one five‐diagonal system of equations is solved to compute the water elevations and then the hydrodynamic pressure is determined from a pressure Poisson equation. The model is applied to three examples to simulate unsteady free surface flows where non‐hydrostatic pressures have a considerable effect on the velocity field. Emphasis is focused on applying the model to wave problems. Two of the examples are about modelling small amplitude waves where the hydrostatic approximation and long wave theory are not valid. The other example is the wind‐induced circulation in a closed basin. The numerical solutions are compared with the available analytical solutions for small amplitude wave theory and very good agreement is obtained. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a finite element solution algorithm for three‐dimensional isothermal turbulent flows for mold‐filling applications. The problems of interest present unusual challenges for both the physical modelling and the solution algorithm. High‐Reynolds number transient turbulent flows with free surfaces have to be computed on complex three‐dimensional geometries. In this work, a segregated algorithm is used to solve the Navier–Stokes, turbulence and front‐tracking equations. The streamline–upwind/Petrov–Galerkin method is used to obtain stable solutions to convection‐dominated problems. Turbulence is modelled using either a one‐equation turbulence model or the κ–ε two‐equation model with wall functions. Turbulence equations are solved for the natural logarithm of the turbulence variables. The change of dependent variables allows for a robust solution algorithm and good predictions even on coarse meshes. This is very important in the case of large three‐dimensional applications for which highly refined meshes result in untreatable large numbers of elements. The position of the flow front in the mold cavity is computed using a level set approach. Finally, equations are integrated in time using an implicit Euler scheme. The methodology presents the robustness and cost effectiveness needed to tackle complex industrial applications. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
This paper describes the Eulerian–Lagrangian boundary element model for the solution of incompressible viscous flow problems using velocity–vorticity variables. A Eulerian–Lagrangian boundary element method (ELBEM) is proposed by the combination of the Eulerian–Lagrangian method and the boundary element method (BEM). ELBEM overcomes the limitation of the traditional BEM, which is incapable of dealing with the arbitrary velocity field in advection‐dominated flow problems. The present ELBEM model involves the solution of the vorticity transport equation for vorticity whose solenoidal vorticity components are obtained iteratively by solving velocity Poisson equations involving the velocity and vorticity components. The velocity Poisson equations are solved using a boundary integral scheme and the vorticity transport equation is solved using the ELBEM. Here the results of two‐dimensional Navier–Stokes problems with low–medium Reynolds numbers in a typical cavity flow are presented and compared with a series solution and other numerical models. The ELBEM model has been found to be feasible and satisfactory. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

10.
A method is developed for performing a local reduction of the governing physics for fluid problems with domains that contain a combination of narrow and non‐narrow regions, and the computational accuracy and performance of the method are measured. In the narrow regions of the domain, where the fluid is assumed to have no inertia and the domain height and curvature are assumed small, lubrication, or Reynolds, theory is used locally to reduce the two‐dimensional Navier–Stokes equations to the one‐dimensional Reynolds equation while retaining a high degree of accuracy in the overall solution. The Reynolds equation is coupled to the governing momentum and mass equations of the non‐narrow region with boundary conditions on the mass and momentum flux. The localized reduction technique, termed ‘stitching,’ is demonstrated on Stokes flow for various geometries of the hydrodynamic journal bearing—a non‐trivial test problem for which a known analytical solution is available. The computational advantage of the coupled Stokes–Reynolds method is illustrated on an industrially applicable fully‐flooded deformable‐roll coating example. The examples in this paper are limited to two‐dimensional Stokes flow, but extension to three‐dimensional and Navier–Stokes flow is possible. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
In a previous work (Park HM, Lee MW. An efficient method of solving the Navier–Stokes equation for the flow control. International Journal of Numerical Methods in Engineering 1998; 41 : 1131–1151), the authors proposed an efficient method of solving the Navier–Stokes equations by reducing their number of modes. Employing the empirical eigenfunctions of the Karhunen–Loève decomposition as basis functions of a Galerkin procedure, one can a priori limit the function space considered to the smallest linear sub‐space that is sufficient to describe the observed phenomena, and consequently, reduce the Navier–Stokes equations defined on a complicated geometry to a set of ordinary differential equations with a minimum degree of freedom. In the present work, we apply this technique, termed the Karhunen–Loève Galerkin procedure, to a pointwise control problem of Navier–Stokes equations. The Karhunen–Loève Galerkin procedure is found to be much more efficient than the traditional method, such as finite difference method in obtaining optimal control profiles when the minimization of the objective function has been done by using a conjugate gradient method.  相似文献   

12.
This paper presents reduced order modelling (ROM) in fluid–structure interaction (FSI). The ROM via the proper orthogonal decomposition (POD) method has been chosen, due to its efficiency in the domain of fluid mechanics. POD-ROM is based on a low-order dynamical system obtained by projecting the nonlinear Navier–Stokes equations on a smaller number of POD modes. These POD modes are spatial and temporally independent. In FSI, the fluid and structure domains are moving, owing to which the POD method cannot be applied directly to reduce the equations of each domain. This article proposes to compute the POD modes for a global velocity field (fluid and solid), and then to construct a low-order dynamical system. The structure domain can be decomposed as a rigid domain, with a finite number of degrees of freedom. This low-order dynamical system is obtained by using a multiphase method similar to the fictitious domain method. This multiphase method extends the Navier–Stokes equations to the solid domain by using a penalisation method and a Lagrangian multiplier. By projecting these equations on the POD modes obtained for the global velocity field, a nonlinear low-order dynamical system is obtained and tested on a case of high Reynolds number.  相似文献   

13.
In the current study, numerical investigation of incompressible turbulent flow is presented. By the artificial compressibility method, momentum and continuity equations are coupled. Considering Reynolds averaged Navier–Stokes equations, the Spalart–Allmaras turbulence model, which has accurate results in two‐dimensional problems, is used to calculate Reynolds stresses. For convective fluxes a Roe‐like scheme is proposed for the steady Reynolds averaged Navier–Stokes equations. Also, Jameson averaging method was implemented. In comparison, the proposed characteristics‐based upwind incompressible turbulent Roe‐like scheme, demonstrated very accurate results, high stability, and fast convergence. The fifth‐order Runge–Kutta scheme is used for time discretization. The local time stepping and implicit residual smoothing were applied as the convergence acceleration techniques. Suitable boundary conditions have been implemented considering flow behavior. The problem has been studied at high Reynolds numbers for cross flow around the horizontal circular cylinder and NACA0012 hydrofoil. Results were compared with those of others and a good agreement has been observed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This paper describes three different time integration methods for unsteady incompressible Navier–Stokes equations. Explicit Euler and fractional‐step Adams–Bashford methods are compared with an implicit three‐level method based on a steady‐state SIMPLE method. The implicit solver employs a dual time stepping and an iteration within the time step. The spatial discretization is based on a co‐located finite‐volume technique. The influence of the convergence limits and the time‐step size on the accuracy of the predictions are studied. The efficiency of the different solvers is compared in a vortex‐shedding flow over a cylinder in the Reynolds number range of 100–1600. A high‐Reynolds‐number flow over a biconvex airfoil profile is also computed. The computations are performed in two dimensions. At the low‐Reynolds‐number range the explicit methods appear to be faster by a factor from 5 to 10. In the high‐Reynolds‐number case, the explicit Adams–Bashford method and the implicit method appear to be approximately equally fast while yielding similar results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper we present a method to solve the Navier–Stokes equations in complex geometries, such as porous sands, using a finite‐element solver but without the complexity of meshing the porous space. The method is based on treating the solid boundaries as a second fluid and solving a set of equations similar to those used for multi‐fluid flow. When combined with anisotropic mesh adaptivity, it is possible to resolve complex geometries starting with an arbitrary coarse mesh. The approach is validated by comparing simulation results with available data in three test cases. In the first we simulate the flow past a cylinder. The second test case compares the pressure drop in flow through random packs of spheres with the Ergun equation. In the last case simulation results are compared with experimental data on the flow past a simplified vehicle model (Ahmed body) at high Reynolds number using large‐eddy simulation (LES). Results are in good agreement with all three reference models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper a semi‐implicit finite difference model for non‐hydrostatic, free‐surface flows is analyzed and discussed. It is shown that the present algorithm is generally more accurate than recently developed models for quasi‐hydrostatic flows. The governing equations are the free‐surface Navier–Stokes equations defined on a general, irregular domain of arbitrary scale. The momentum equations, the incompressibility condition and the equation for the free‐surface are integrated by a semi‐implicit algorithm in such a fashion that the resulting numerical solution is mass conservative and unconditionally stable with respect to the gravity wave speed, wind stress, vertical viscosity and bottom friction. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
Three kinds of two‐level consistent splitting algorithms for the time‐dependent Navier–Stokes equations are discussed. The basic technique of two‐level type methods for solving the nonlinear problem is first to solve a nonlinear problem in a coarse‐level subspace, then to solve a linear equation in a fine‐level subspace. Hence, the two‐level methods can save a lot of work compared with the one‐level methods. The approaches to linearization are considered based on Stokes, Newton, and Oseen corrections. The stability and convergence demonstrate that the two‐level methods can acquire the optimal accuracy with the proper choice of the coarse and fine mesh scales. Numerical examples show that Stokes correction is the simplest, Newton correction has the best accuracy, while Oseen correction is preferable for the large Reynolds number problems and the long‐time simulations among the three methods. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
A novel implicit cell‐vertex finite volume method is described for the solution of the Navier–Stokes equations at high Reynolds numbers. The key idea is the elimination of the pressure term from the momentum equation by multiplying the momentum equation with the unit normal vector to a control volume boundary and integrating thereafter around this boundary. The resulting equations are expressed solely in terms of the velocity components. Thus any difficulties with pressure or vorticity boundary conditions are circumvented and the number of primary variables that need to be determined equals the number of space dimensions. The method is applied to both the steady and unsteady two‐dimensional lid‐driven cavity problem at Reynolds numbers up to 10000. Results are compared with those in the literature and show excellent agreement. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Simulation of nano‐scale channel flows using a coupled Navier–Stokes/Molecular Dynamics (MD) method is presented. The flow cases serve as examples of the application of a multi‐physics computational framework put forward in this work. The framework employs a set of (partially) overlapping sub‐domains in which different levels of physical modelling are used to describe the flow. This way, numerical simulations based on the Navier–Stokes equations can be extended to flows in which the continuum and/or Newtonian flow assumptions break down in regions of the domain, by locally increasing the level of detail in the model. Then, the use of multiple levels of physical modelling can reduce the overall computational cost for a given level of fidelity. The present work describes the structure of a parallel computational framework for such simulations, including details of a Navier–Stokes/MD coupling, the convergence behaviour of coupled simulations as well as the parallel implementation. For the cases considered here, micro‐scale MD problems are constructed to provide viscous stresses for the Navier–Stokes equations. The first problem is the planar Poiseuille flow, for which the viscous fluxes on each cell face in the finite‐volume discretization are evaluated using MD. The second example deals with fully developed three‐dimensional channel flow, with molecular level modelling of the shear stresses in a group of cells in the domain corners. An important aspect in using shear stresses evaluated with MD in Navier–Stokes simulations is the scatter in the data due to the sampling of a finite ensemble over a limited interval. In the coupled simulations, this prevents the convergence of the system in terms of the reduction of the norm of the residual vector of the finite‐volume discretization of the macro‐domain. Solutions to this problem are discussed in the present work, along with an analysis of the effect of number of realizations and sample duration. The averaging of the apparent viscosity for each cell face, i.e. the ratio of the shear stress predicted from MD and the imposed velocity gradient, over a number of macro‐scale time steps is shown to be a simple but effective method to reach a good level of convergence of the coupled system. Finally, the parallel efficiency of the developed method is demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The baroclinic stability of a family of two time‐level, semi‐implicit schemes for the 3D hydrostatic, Boussinesq Navier–Stokes equations (i.e. the shallow water equations), which originate from the TRIM model of Casulli and Cheng (Int. J. Numer. Methods Fluids 1992; 15 :629–648), is examined in a simple 2D horizontal–vertical domain. It is demonstrated that existing mass‐conservative low‐dissipation semi‐implicit methods, which are unconditionally stable in the inviscid limit for barotropic flows, are unstable in the same limit for baroclinic flows. Such methods can be made baroclinically stable when the integrated continuity equation is discretized with a barotropically dissipative backwards Euler scheme. A general family of two‐step predictor‐corrector schemes is proposed that have better theoretical characteristics than existing single‐step schemes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号