首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EPR Spectroscopic Characterization (X‐, Q‐Band) of Monomeric AgII‐ and AuII‐Complexes of the Thiacrownethers [12]aneS4, [16]aneS4, [18]aneS6 and [27]aneS9 The reaction of the prepared AgI complexes of the thiacrownethers [12]aneS4, [16]aneS4, [18]aneS6 and [27]aneS9 with c. H2SO4 as well as the reaction of [AuIIICl4] with [18]aneS6 and [27]aneS9 leads to labile AgII‐ (4d9, 107, 109Ag: I=1/2) and AuII‐ (5d9, 197Au: I=3/2) thiacrownether complexes, respectively, which were characterized by X‐ and Q‐band EPR. The EPR spectra of [AgII([12]anS4)]2+ and [AgII([18]anS6)]2+ were reinvestigated. According to an analysis of the spin‐density distribution only 20 ‐ 25 % is located on the Ag or Au atoms. Most of the spin‐density was found to be on the S donor atoms of the thiacrownethers. The high delocalization of the spin‐density leads certainly to a noticeable reduction of the AgI/AgII redox potential and is considered as being mainly responsible for the easy accessibility of the AgII compounds.  相似文献   

2.
Synthesis, Structures, EPR and ENDOR Investigations on Transition Metal Complexes of N, N‐diisobutyl‐N′‐(2, 6‐difluoro)benzoyl selenourea The synthesis and the structures of the NiII and PdII complexes of the ligand N, N‐diisobutyl‐N′‐(2, 6‐difluoro)benzoylselenourea HBui2dfbsu are reported. The ligands coordinate bidentately forming bis‐chelates. The structure of the ligand could not be obtained, however, the structure of its O‐ethyl ester will be reported. Attempts to prepare the CuII complex result only in the formation of oily products. However, the CuII complex could be incorporated into the corresponding NiII and PdII compounds. From this diamagnetically diluted powder and single‐crystal samples were obtained being suitable for EPR‐ENDOR measurements. We report X‐ and Q‐band EPR investigations on the systems [Cu/Ni(Bui2dfbsu)2] and [Cu/Pd(Bui2dfbsu)2] as well as a single‐crystal X‐band EPR study for [Cu/Ni(Bui2dfbsu)2]. The obtained 63, 65Cu and 77Se hyperfine structure tensors allow a determination of the spin‐density distribution within the first coordination sphere. In addition, orientation selective 19F Q‐band pulse ENDOR investigations on powder‐samples of [Cu/Ni(Bui2dfbsu)2] have been performed. The hyperfine structure tensors of two intramolecular 19F atoms could be determined. According to the small 19F couplings only a vanishingly small spin‐density of < 1 % was obtained for these 19F atoms.  相似文献   

3.
A series of new heteroleptic MN2S2 transition metal complexes with M = Cu2+ for EPR measurements and as diamagnetic hosts Ni2+, Zn2+, and Pd2+ were synthesized and characterized. The ligands are N2 = 4, 4′‐bis(tert‐butyl)‐2, 2′‐bipyridine (tBu2bpy) and S2 =1, 2‐dithiooxalate, (dto), 1, 2‐dithiosquarate, (dtsq), maleonitrile‐1, 2‐dithiolate, or 1, 2‐dicyanoethene‐1, 2‐dithiolate, (mnt). The CuII complexes were studied by EPR in solution and as powders, diamagnetically diluted in the isostructural planar [NiII(tBu2bpy)(S2)] or[PdII(tBu2bpy)(S2)] as well as in tetrahedrally coordinated[ZnII(tBu2bpy)(S2)] host structures to put steric stress on the coordination geometry of the central CuN2S2 unit. The spin density contributions for different geometries calculated from experimental parameters are compared with the electronic situation in the frontier orbital, namely in the semi‐occupied molecular orbital (SOMO) of the copper complex, derived from quantum chemical calculations on different levels (EHT and DFT). One of the hosts, [NiII(tBu2bpy)(mnt)], is characterized by X‐ray structure analysis to prove the coordination geometry. The complex crystallizes in a square‐planar coordination mode in the monoclinic space group P21/a with Z = 4 and the unit cell parameters a = 10.4508(10) Å, b = 18.266(2) Å, c = 12.6566(12) Å, β = 112.095(7)°. Oxidation and reductions potentials of one of the host complexes, [Ni(tBu2bpy)(mnt)], were obtained by cyclovoltammetric measurements.  相似文献   

4.
New compounds [Ru(pap)2(L)](ClO4), [Ru(pap)(L)2], and [Ru(acac)2(L)] (pap=2‐phenylazopyridine, L?=9‐oxidophenalenone, acac?=2,4‐pentanedionate) have been prepared and studied regarding their electron‐transfer behavior, both experimentally and by using DFT calculations. [Ru(pap)2(L)](ClO4) and [Ru(acac)2(L)] were characterized by crystal‐structure analysis. Spectroelectrochemistry (EPR, UV/Vis/NIR), in conjunction with cyclic voltammetry, showed a wide range of about 2 V for the potential of the RuIII/II couple, which was in agreement with the very different characteristics of the strongly π‐accepting pap ligand and the σ‐donating acac? ligand. At the rather high potential of +1.35 V versus SCE, the oxidation of L? into L. could be deduced from the near‐IR absorption of [RuIII(pap)(L.)(L?)]2+. Other intense long‐wavelength transitions, including LMCT (L?→RuIII) and LL/CT (pap.?→L?) processes, were confirmed by TD‐DFT results. DFT calculations and EPR data for the paramagnetic intermediates allowed us to assess the spin densities, which revealed two cases with considerable contributions from L‐radical‐involving forms, that is, [RuIII(pap0)2(L?)]2+?[RuII(pap0)2(L.)]2+ and [RuIII(pap0)(L?)2]+?[RuII(pap0)(L?)(L?)]+. Calculations of electrogenerated complex [RuII(pap.?)(pap0)(L?)] displayed considerable negative spin density (?0.188) at the bridging metal.  相似文献   

5.
Tetrakis(1‐adamantylcarboxylato)dicopper(II) Cu2(1‐Ad)4 – Synthesis, Structure and X‐/Q‐band EPR Investigations The synthesis and the crystal structure of tetrakis(1‐adamantylcarboxylato)dicopper(II) are reported. [Cu2(1‐Ad)4·2DMF] ( 1 , 1‐Ad = adamantylcarboxylate) crystallizes in the space group (Z = 2) with two crystallographically distinguishable complexes in the unit cell. The averaged Cu‐Cu distance of 260.5 pm is smaller than that found for Cu2(ac)4·2H2O. The combination of temperature‐dependent X‐ and Q‐band powder EPR investigations in the temperature range 6 ≤ T ≤ 295 K show the presence of an antiferromagnetically coupled Cu‐Cu dimer and allow a precise determination of the spin‐Hamiltonian parameter. A comparison of those with that derived for Cu2(ac)4·2H2O indicate a higher symmetry within the Cu2O8 central unit of [Cu2(1‐Ad)4·2DMF].  相似文献   

6.
The hexadentate ligand all‐cis‐N1,N2‐bis(2,4,6‐trihydroxy‐3,5‐diaminocyclohexyl)ethane‐1,2‐diamine (Le) was synthesized in five steps with an overall yield of 39 % by using [Ni(taci)2]SO4?4 H2O as starting material (taci=1,3,5‐triamino‐1,3,5‐trideoxy‐cis‐inositol). Crystal structures of [Na0.5(H6Le)](BiCl6)2Cl0.5?4 H2O ( 1 ), [Ni(Le)]‐ Cl2?5 H2O ( 2 ), [Cu(Le)](ClO4)2?H2O ( 3 ), [Zn(Le)]CO3?7 H2O ( 4 ), [Co(Le)](ClO4)3 ( 5 c ), and [Ga(H?2Le)]‐ NO3?2 H2O ( 6 ) are reported. The Na complex 1 exhibited a chain structure with the Na+ cations bonded to three hydroxy groups of one taci subunit of the fully protonated H6(Le)6+ ligand. In 2 , 3 , 4 , and 5 c , a mononuclear hexaamine coordination was found. In the Ga complex 6 , a mononuclear hexadentate coordination was also observed, but the metal binding occurred through four amino groups and two alkoxo groups of the doubly deprotonated H?2(Le)2?. The steric strain within the molecular framework of various M(Le) isomers was analyzed by means of molecular mechanics calculations. The formation of complexes of Le with MnII, CuII, ZnII, and CdII was investigated in aqueous solution by using potentiometric and spectrophotometric titration experiments. Extended equilibrium systems comprising a large number of species were observed, such as [M(Le)]2+, protonated complexes [MHz(Le)]2+z and oligonuclear aggregates. The pKa values of H6(Le)6+ (25 °C, μ=0.10 m ) were found to be 2.99, 5.63, 6.72, 7.38, 8.37, and 9.07, and the determined formation constants (log β) of [M(Le)]2+ were 6.13(3) (MnII), 20.11(2) (CuII), 13.60(2) (ZnII), and 10.43(2) (CdII). The redox potentials (vs. NHE) of the [M(Le)]3+/2+ couples were elucidated for Co (?0.38 V) and Ni (+0.90 V) by cyclic voltammetry.  相似文献   

7.
A diamagnetic AuI4CoIII2 hexanuclear complex, [Au4Co2(dppe)2(l ‐nmc)4]2+ ([ 1L ‐ nmc ]2+; dppe=1,2‐bis(diphenylphosphino)ethane, l ‐H2nmc=N‐methyl‐l ‐cysteine), was newly synthesized by the reaction of [Co(l ‐nmc)2]? with [Au2Cl2(dppe)] and crystallized with different inorganic anions (X=ClO4?, NO3?, Cl?, SO42?) to produce ionic solids ([ 1L ‐ nmc ]Xn). Single‐crystal X‐ray analysis revealed that all the solids crystallize in the chiral space group F432 with a face‐centered‐cubic lattice structure consisting of supramolecular octahedra of complex cations. The paramagnetic nature of all the solids was evidenced by magnetic susceptibility measurements, showing the variation of the oxidation states of two cobalt centers in [ 1L ‐ nmc ]n+ from CoII1.00CoIII1.00 for X=ClO4? or NO3? to CoII0.67CoIII1.33 for X=Cl?, via CoII0.83CoIII1.17 for X=SO42?. The difference in the CoII/III mixed‐valences was explained by the difference in sizes and charges of counter anions accommodated in lattice interstices with a fixed volume.  相似文献   

8.
The reaction of [AuIII(mnt)2]? with (n‐Bu4N)[BH4] in acetone leads to the formation of [AuII(mnt)2]2?, which is the second stable mononuclear AuII complex characterized by X‐ray structure analysis. (n‐Bu4N)2[AuII(mnt)2] crystallizes triclinic, P (a = 904.24(5), b = 989.55(5), c = 1627.35(10) pm, α = 92.040(7), β = 94.937(7), γ = 107.220(6)°, Z = 1) with two molecules acetone per unit cell. The anion is planar. From EPR investigations using single crystals of (n‐Bu4N)2[AuII(mnt)2] the g tensor components were derived. Information about magnetic exchange interactions were obtained from line width analyses.  相似文献   

9.
Ruthenium(II) π‐coordination onto [28]hexaphyrins(1.1.1.1.1.1) has been accomplished. Reactions of bis‐AuIII and mono‐AuIII complexes of hexakis(pentafluorophenyl) [28]hexaphyrin with [RuCl2(p‐cymene)]2 in the presence of NaOAc gave the corresponding π‐ruthenium complexes, in which the [(p‐cymene)Ru]II fragment sat on the deprotonated side pyrrole. A similar reaction of the bis‐PdII [26]hexaphyrin complex afforded a triple‐decker complex, in which the two [(p‐cymene)Ru]II fragments sat on both sides of the center of the [26]hexaphyrin framework.  相似文献   

10.
《化学:亚洲杂志》2018,13(15):1906-1910
A unique example of a ring‐to‐cage structural conversion in a multinuclear gold(I) coordination system with d ‐penicillamine (d ‐H2pen) is reported. The reaction of [Au2Cl2(dppe)] (dppe=1,2‐bis(diphenylphosphino)ethane) with d ‐H2pen in a 1:1 ratio gave [Au4(dppe)2(d ‐pen)2] ([ 1 ]), in which two [Au2(dppe)]2+ units are linked by two d ‐pen S atoms in a cyclic form so as to have two bidentate‐N,O coordination arms. The subsequent reaction of [ 1 ] with Cu(OTf)2 afforded [Au4Cu(dppe)2(d ‐pen)2]2+ ([ 2 ]2+), in which a CuII ion is chelated by the two coordination arms in [ 1 ] to form an AuI4CuII bicyclic metallocage. A similar reaction using Cu(NO3)2 was accompanied by the ring expansion of [ 1 ] to [Au8(dppe)4(d ‐pen)4], leading to the production of [Au8Cu2(dppe)4(d ‐pen)4]4+ ([ 3 ]4+). In [ 3 ]4+, two CuII ions are each chelated by the two coordination arms to form an AuI8CuII2 tricyclic metallocage, accommodating a nitrate ion. The use of Ni(NO3)2 or Ni(OAc)2 instead of Cu(NO3)2 commonly gave a tricyclic metallocage of [Au8Ni2(dppe)4(d ‐pen)4]4+ ([ 4 ]4+), but a water molecule was accommodated inside the AuI8NiII2 metallocage.  相似文献   

11.
A new strategy for the fixation of redox‐active dinickel(II) complexes with high‐spin ground states to gold surfaces was developed. The dinickel(II) complex [Ni2L(Cl)]ClO4 ( 1 ClO4), in which L2? represents a 24‐membered macrocyclic hexaaza‐dithiophenolate ligand, reacts with ambidentate 4‐(diphenylphosphino)benzoate (dppba) to form the carboxylato‐bridged complex [Ni2L(dppba)]+, which can be isolated as an air‐stable perchlorate [Ni2L(dppba)]ClO4 ( 2 ClO4) or tetraphenylborate [Ni2L(dppba)]BPh4 ( 2 BPh4) salt. The auration of 2 ClO4 was probed on a molecular level, by reaction with AuCl, which leads to the monoaurated NiII2AuI complex [NiII2L(dppba)AuICl]ClO4 ( 3 ClO4). Metathesis of 3 ClO4 with NaBPh4 produces [NiII2L(dppba)AuIPh]BPh4 ( 4 BPh4), in which the Cl? is replaced by a Ph? group. The complexes were fully characterized by ESI mass spectrometry, IR and UV/Vis spectroscopy, X‐ray crystallography ( 2 BPh4 and 4 BPh4), cyclic voltammetry, SQUID magnetometry and HF‐ESR spectroscopy. Temperature‐dependent magnetic susceptibility measurements reveal a ferromagnetic coupling J=+15.9 and +17.9 cm?1 between the two NiII ions in 2 ClO4 and 4 BPh4 (H=?2 JS1S2). HF‐ESR measurements yield a negative axial magnetic anisotropy (D<0), which implies a bistable (easy axis) magnetic ground state. The binding of the [Ni2L(dppba)]ClO4 complex to gold was ascertained by four complementary surface analytical methods: contact angle measurements, atomic‐force microscopy, X‐ray photoelectron spectroscopy, and spectroscopic ellipsometry. The results indicate that the complexes are attached to the Au surface through coordinative Au? P bonds in a monolayer.  相似文献   

12.
The NiII complexes [Ni([9]aneNS2‐CH3)2]2+ ([9]aneNS2‐CH3=N‐methyl‐1‐aza‐4,7‐dithiacyclononane), [Ni(bis[9]aneNS2‐C2H4)]2+ (bis[9]aneNS2‐C2H4=1,2‐bis‐(1‐aza‐4,7‐dithiacyclononylethane) and [Ni([9]aneS3)2]2+ ([9]aneS3=1,4,7‐trithiacyclononane) have been prepared and can be electrochemically and chemically oxidized to give the formal NiIII products, which have been characterized by X‐ray crystallography, UV/Vis and multi‐frequency EPR spectroscopy. The single‐crystal X‐ray structure of [NiIII([9]aneNS2‐CH3)2](ClO4)6?(H5O2)3 reveals an octahedral co‐ordination at the Ni centre, while the crystal structure of [NiIII(bis[9]aneNS2‐C2H4)](ClO4)6?(H3O)3? 3H2O exhibits a more distorted co‐ordination. In the homoleptic analogue, [NiIII([9]aneS3)2](ClO4)3, structurally characterized at 30 K, the Ni? S distances [2.249(6), 2.251(5) and 2.437(2) Å] are consistent with a Jahn–Teller distorted octahedral stereochemistry. [Ni([9]aneNS2‐CH3)2](PF6)2 shows a one‐electron oxidation process in MeCN (0.2 M NBu4PF6, 293 K) at E1/2=+1.10 V versus Fc+/Fc assigned to a formal NiIII/NiII couple. [Ni(bis[9]aneNS2‐C2H4)](PF6)2 exhibits a one‐electron oxidation process at E1/2=+0.98 V and a reduction process at E1/2=?1.25 V assigned to NiII/NiIII and NiII/NiI couples, respectively. The multi‐frequency X‐, L‐, S‐, K‐band EPR spectra of the 3+ cations and their 86.2 % 61Ni‐enriched analogues were simulated. Treatment of the spin Hamiltonian parameters by perturbation theory reveals that the SOMO has 50.6 %, 42.8 % and 37.2 % Ni character in [Ni([9]aneNS2‐CH3)2]3+, [Ni(bis[9]aneNS2‐C2H4)]3+ and [Ni([9]aneS3)2]3+, respectively, consistent with DFT calculations, and reflecting delocalisation of charge onto the S‐thioether centres. EPR spectra for [61Ni([9]aneS3)2]3+ are consistent with a dynamic Jahn–Teller distortion in this compound.  相似文献   

13.
In the title three‐dimensional coordination polymer, [Sr(4‐CPOA)(H2O)]n (where 4‐CPOA2− is the 4‐carboxylatophenoxy­acetate dianion, C9H6O5), each SrII atom displays a bicapped triangular prismatic configuration, defined by five carboxyl and one ether O atom from five different 4‐CPOA2− ligands, as well as two water mol­ecules. The SrII atoms are covalently linked by 4‐CPOA2− ligands and water mol­ecules, giving rise to a three‐dimensional open framework. In previously studied polymers of this type, the 4‐CPOA2− ligand shows a variety of binding modes to metal ions, from mono‐ to pentadentate. In the present SrII complex, a novel hexadentate bridging mode is observed.  相似文献   

14.
The title complex, [CdCl(NCS)(C10H8N2)]n, represents an unusual CdII coordination polymer constructed by two types of anionic bridges and 2,2′‐bipyridyl (bipy) terminal ligands. These two types of bridges are arranged around inversion centers. The distorted octahedral coordination of the CdII center is provided by two chloride ions, one N‐ and one S‐donor atom from two thiocyanate ions, and a pair of N atoms from the chelating bipy ligand. Interestingly, adjacent CdII ions are interconnected alternately by paired chloride [Cd...Cd = 3.916 (1) Å] and thiocyanate bridges [Cd...Cd = 5.936 (1) Å] to generate an infinite one‐dimensional coordination chain. Furthermore, weak interchain C—H...S interactions between the bipy components and thiocyanate ions lead to the formation of a layered supramolecular structure.  相似文献   

15.
The crystal structure of the low‐spin (S = 1) MnIII complex [Mn(CN)2(C10H24N4)]ClO4, or trans‐[Mn(CN)2(cyclam)](ClO4) (cyclam is the tetradentate amine ligand 1,4,8,11‐tetra­aza­cyclo­tetra­decane), is reported. The structural parameters in the Mn(cyclam) moiety are found to be insensitive to both the spin and the oxidation state of the Mn ion. The difference between high‐ and low‐spin MnIII complexes is that a pronounced tetragonal elongation of the coordination octahedron occurs in high‐spin complexes and a slight tetragonal compression is seen in low‐spin complexes, as in the title complex.  相似文献   

16.
The complex series [Ru(pap)(Q)2]n ([ 1 ]n–[ 4 ]n; n=+2, +1, 0, ?1, ?2) contains four redox non‐innocent entities: one ruthenium ion, 2‐phenylazopyridine (pap), and two o‐iminoquinone moieties, Q=3,5‐di‐tert‐butyl‐N‐aryl‐1,2‐benzoquinonemonoimine (aryl=C6H5 ( 1+ ); m‐(Cl)2C6H3 ( 2+ ); m‐(OCH3)2C6H3 ( 3+ ); m‐(tBu)2C6H3 ( 4 +)). A crystal structure determination of the representative compound, [ 1 ]ClO4, established the crystallization of the ctt‐isomeric form, that is, cis and trans with respect to the mutual orientations of O and N donors of two Q ligands, and the coordinating azo N atom trans to the O donor of Q. The sensitive C? O (average: 1.299(3) Å), C? N (average: 1.346(4) Å) and intra‐ring C? C (meta; average: 1.373(4) Å) bond lengths of the coordinated iminoquinone moieties in corroboration with the N?N length (1.292(3) Å) of pap in 1 + establish [RuIII(pap0)(Q.?)2]+ as the most appropriate electronic structural form. The coupling of three spins from one low‐spin ruthenium(III) (t2g5) and two Q.? radicals in 1 +– 4 + gives a ground state with one unpaired electron on Q.?, as evident from g=1.995 radical‐type EPR signals for 1 +– 4 +. Accordingly, the DFT‐calculated Mulliken spin densities of 1 + (1.152 for two Q, Ru: ?0.179, pap: 0.031) confirm Q‐based spin. Complex ions 1 +– 4 + exhibit two near‐IR absorption bands at about λ=2000 and 920 nm in addition to intense multiple transitions covering the visible to UV regions; compounds [ 1 ]ClO4–[ 4 ]ClO4 undergo one oxidation and three separate reduction processes within ±2.0 V versus SCE. The crystal structure of the neutral (one‐electron reduced) state ( 2 ) was determined to show metal‐based reduction and an EPR signal at g=1.996. The electronic transitions of the complexes 1 n– 4 n (n=+2, +1, 0, ?1, ?2) in the UV, visible, and NIR regions, as determined by using spectroelectrochemistry, have been analyzed by TD‐DFT calculations and reveal significant low‐energy absorbance (λmax>1000 nm) for cations, anions, and neutral forms. The experimental studies in combination with DFT calculations suggest the dominant valence configurations of 1 n– 4 n in the accessible redox states to be [RuIII(pap0)(Q.?)(Q0)]2+ ( 1 2+– 4 2+)→[RuIII(pap0)(Q.?)2]+ ( 1 +– 4 +)→[RuII(pap0)(Q.?)2] ( 1 – 4 )→[RuII(pap.?)(Q.?)2]? ( 1 ?– 4 ?)→[RuIII(pap.?)(Q2?)2]2? ( 1 2?– 4 2?).  相似文献   

17.
The amino substituted bidentate chelating ligand 2‐amino‐5‐(2‐pyridyl)‐1,3,4‐thiadiazole (H2 L ) was used to prepare 3:1‐type coordination compounds of iron(II), cobalt(II) and nickel(II). In the iron(II) perchlorate complex [FeII(H2 L )3](ClO4)2·0.6MeOH·0.9H2O a 1:1 mixture of mer and fac isomers is present whereas [FeII(H2 L )3](BF4)2·MeOH·H2O, [CoII(H2 L )3](ClO4)2·2H2O and [NiII(H2 L )3](ClO4)2·MeOH·H2O feature merely mer derivatives. Moessbauer spectroscopy and variable temperature magnetic measurements revealed the [FeII(H2 L )3]2+ complex core to exist in the low‐spin state, whereas the [CoII(H2 L )3]2+ complex core resides in its high‐spin state, even at very low temperatures.  相似文献   

18.
Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to the studies of biomolecules by providing highly accurate geometric constraints. Combining double‐histidine motifs with CuII spin labels can further increase the precision of distance measurements. It is also useful for proteins containing essential cysteines that can interfere with thiol‐specific labelling. However, the non‐covalent CuII coordination approach is vulnerable to low binding‐affinity. Herein, dissociation constants (KD) are investigated directly from the modulation depths of relaxation‐induced dipolar modulation enhancement (RIDME) EPR experiments. This reveals low‐ to sub‐μm CuII KDs under EPR distance measurement conditions at cryogenic temperatures. We show the feasibility of exploiting the double‐histidine motif for EPR applications even at sub‐μm protein concentrations in orthogonally labelled CuII–nitroxide systems using a commercial Q‐band EPR instrument.  相似文献   

19.
Synthesis, Structure and EPR Investigations of binuclear Bis(N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thioureato)) Complexes of CuII, NiII, ZnII, CdII and PdII The synthesis of binuclear CuII‐, NiII‐, ZnII‐, CdII‐ and PdII‐complexes of the quadridentate ligand N,N,N?,N?‐tetraisobutyl‐N′,N″‐isophthaloylbis(thiourea) and the crystal structures of the CuII‐ and NiII‐complexes are reported. The CuII‐complex crystallizes in two polymorphic modifications: triclinic, (Z = 1) and monoclinic, P21/c (Z = 2). The NiII‐complex was found to be isostructural with the triclinic modification of the copper complex. The also prepared PdII‐, ZnII‐ and CdII‐complexes could not be characterized by X‐ray analysis. However, EPR studies of diamagnetically diluted CuII/PdII‐ and CuII/ZnII‐powders show axially‐symmetric g and A Cu tensors suggesting a nearly planar co‐ordination within the binuclear host complexes. Diamagnetically diluted CuII/CdII powder samples could not be prepared. In the EPR spectra of the pure binuclear CuII‐complex exchange‐coupled CuII‐CuII pairs were observed. According to the large CuII‐CuII distance of about 7,50Å a small fine structure parameter D = 26·10?4 cm?1 is observed; T‐dependent EPR measurements down to 5 K reveal small antiferromagnetic interactions for the CuII‐CuII dimer. Besides of the dimer in the EPR spectra the signals of a mononuclear CuII species are observed whose concentration is T‐dependent. This observation can be explained assuming an equilibrium between the binuclear CuII‐complex (CuII‐CuII pairs) and oligomeric complexes with “isolated” CuII ions.  相似文献   

20.
A newly synthesized one‐dimensional (1D) hydrogen‐bonded (H‐bonded) rhodium(II)–η5‐semiquinone complex, [Cp*Rh(η5p‐HSQ‐Me4)]PF6 ([ 1 ]PF6; Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl; HSQ=semiquinone) exhibits a paraelectric–antiferroelectric second‐order phase transition at 237.1 K. Neutron and X‐ray crystal structure analyses reveal that the H‐bonded proton is disordered over two sites in the room‐temperature (RT) phase. The phase transition would arise from this proton disorder together with rotation or libration of the Cp* ring and PF6? ion. The relative permittivity εb′ along the H‐bonded chains reaches relatively high values (ca., 130) in the RT phase. The temperature dependence of 13C CP/MAS NMR spectra demonstrates that the proton is dynamically disordered in the RT phase and that the proton exchange has already occurred in the low‐temperature (LT) phase. Rate constants for the proton exchange are estimated to be 10?4–10?6 s in the temperature range of 240–270 K. DFT calculations predict that the protonation/deprotonation of [ 1 ]+ leads to interesting hapticity changes of the semiquinone ligand accompanied by reduction/oxidation by the π‐bonded rhodium fragment, producing the stable η6‐hydroquinone complex, [Cp*Rh3+6p‐H2Q‐Me4)]2+ ([ 2 ]2+), and η4‐benzoquinone complex, [Cp*Rh+4p‐BQ‐Me4)] ([ 3 ]), respectively. Possible mechanisms leading to the dielectric response are discussed on the basis of the migration of the protonic solitons comprising of [ 2 ]2+ and [ 3 ], which would be generated in the H‐bonded chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号