首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
On Polychalcogenides of Thallium with M2Q11 Groups as a Structural Building Block. I Preparation, Properties, X‐ray Diffractometry, and Spectroscopic Investigations of Tl4Nb2S11 and Tl4Ta2S11 The new ternary compounds Tl4Nb2S11 and Tl4Ta2S11 were prepared using Thallium polysulfide melts. Tl4M2S11 crystallises isotypically to K4Nb2S8.9Se2.1 in the triclinic space group P 1 with a = 7.806(2) Å, b = 8.866(2) Å, c = 13.121(3) Å, α = 72.72(2)°, β = 88.80(3)°, and γ = 85.86(2)° for M = Nb and a = 7.837(1) Å, b = 8.902(1) Å, c = 13.176(1) Å, α = 72.69(1)°, β = 88.74(1)°, and γ = 85.67(1)° for M = Ta. The interatomic distances as well as angles within the [M2S11]4– anions are similar to those of the previously reported data for analogous alkali metal polysulfides. Significant differences between Tl4M2S11 and A4M2S11 (A = K, Rb, Cs) are obvious for the shape of the polyhedra around the electropositive elements. The two title compounds melt congruently at 732 K (M = Nb) and 729 K (M = Ta). The optical band gaps were estimated as 1.26 eV for Tl4Nb2S11 and as 1.80 eV for the Tantalum compound.  相似文献   

2.
The perseleno‐selenoborates Rb2B2Se7 and Cs3B3Se10 were prepared from the metal selenides, amorphous boron and selenium, the thallium perseleno‐selenoborates Tl2B2Se7 and Tl3B3Se10 directly from the elements in evacuated carbon coated silica tubes by solid state reactions at temperatures between 920 K and 950 K. All structures were refined from single crystal X‐ray diffraction data. The isotypic perseleno‐selenoborates Rb2B2Se7 and Tl2B2Se7 crystallize in the monoclinic space group I 2/a (No. 15) with lattice parameters a = 12.414(3) Å, b = 7.314(2) Å, c = 14.092(3) Å, β = 107.30(3)°, and Z = 4 for Rb2B2Se7 and a = 11.878(2) Å, b = 7.091(2) Å, c = 13.998(3) Å, β = 108.37(3)° with Z = 4 for Tl2B2Se7. The isotypic perseleno‐selenoborates Cs3B3Se10 and Tl3B3Se10 crystallize in the triclinic space group P1 (Cs3B3Se10: a = 7.583(2) Å, b = 8.464(2) Å, c = 15.276(3) Å, α = 107.03(3)°, β = 89.29(3)°, γ = 101.19(3)°, Z = 2, (non‐conventional setting); Tl3B3Se10: a = 7.099(2) Å, b = 8.072(2) Å, c = 14.545(3) Å, α = 105.24(3)°, β = 95.82(3)°, γ = 92.79(3)°, and Z = 2). All crystal structures contain polymeric anionic chains of composition ([B2Se7]2–)n or ([B3Se10]3–)n formed by spirocyclically fused non‐planar five‐membered B2Se3 rings and six‐membered B2Se4 rings in a molar ratio of 1 : 1 or 2 : 1, respectively. All boron atoms have tetrahedral coordination with corner‐sharing BSe4 tetrahedra additionally connected via Se–Se bridges. The cations are situated between three polymeric anionic chains leading to a nine‐fold coordination of the rubidium and thallium cations by selenium in M2B2Se7 (M = Rb, Tl). Coordination numbers of Cs+ (Tl+) in Cs3B3Se10 (Tl3B3Se10) are 12(11) and 11(9).  相似文献   

3.
Chloro- and Polyselenoselenates(II): Synthesis, Structure, and Properties of [Ph3(C2H4OH)P]2[SeCl4] · MeCN, [Ph4P]2[Se2Cl6], and [Ph4P]2[Se(Se5)2] By symproportionation of elemental selenium and SeCl4 in polar protic solvents the novel chloroselenates(+II), [SeCl4]2? and [Se2Cl6]2?, could be stabilized; they were crystallized with voluminous organic cations. They were characterized from complete X-ray structure analysis. Yellow-orange [Ph3(C2H4OH)P]2[SeCl4] · MeCN (space group P1 , a = 10.535(4), b = 12.204(5), c = 16.845(6) Å, α = 77.09(3)°, β = 76.40(3)°, γ = 82.75(3)° at 140 K) contains in its crystal structure monomeric [SeCl4]2? anions with square-planar coordination of Se(+II). The mean Se? Cl bond length is 2.441 Å. In yellow [Ph4P]2[Se2Cl6] (space group P1 , a = 10.269(3), b = 10.836(4), c = 10.872(3) Å, α = 80.26(3)°, β = 79.84(2)°, γ = 72.21(3)° at 140 K) a dinuclear centrosymmetric [Se2Cl6]2? anion, also with square-planar coordinated Se(+II), is observed. The average terminal and bridging Se? Cl bond distances are 2.273 and 2.680 Å, respectively. From redox reactions of elemental Se with boranate/thiolate in ethanol/DMF the bis(pentaselenido)selenate(+II) anion [Se(Se5)2]2? was prepared as a novel type of a mixed-valent chalcogenide. In dark-red-brown [Ph4P]2[Se(Se5)2] (space group P21/n, a = 12.748(4), b = 14.659(5), c = 14.036(5) Å, β = 108.53(3)° at 140 K) centrosymmetric molecular [Se(Se5)2]2? anions with square-planar coordination of the central Se(+II) by two bidentate pentaselenide ligands is observed (mean Se? Se bond lengths: 2.658 Å at Se(+II), 2.322 Å in [Se5]2?). The resulting six-membered chelate rings with chair conformation are spirocyclically linked through the central Se(+II). The vibrational spectra of the new anions are reported.  相似文献   

4.
The new compounds K6Nb4S22 and K6Ta4S22 ( I ) have been synthesised by the reaction of NbS2 or Ta metal in a K2S3 flux. Using TaS2 as educt a second modification of K6Ta4S22 ( II ) is obtained. K6Nb4S22 and K6Ta4S22 (form I ) crystallise in the monoclinic space group C2/c with a = 35.634 (2)Å, b = 7.8448 (4)Å, c = 12.1505 (5)Å, β = 100.853 (5)°, V = 3335.8 (3)Å3, and Z = 4 for K6Nb4S22 and a = 35.563 (7) Å, b = 7.836 (2)Å, c = 12.139 (2)Å, β = 100.56 (3)°, V = 3325.5 (2)Å3, and Z = 4 for K6Ta4S22 ( I ). The second modification K6Ta4S22 (form II ) crystallises in the monoclinic space group P21/c with a = 7.5835 (6)Å, b = 8.7115 (5)Å, c = 24.421 (2)Å, β = 98.733 (9)°, V = 1594.6 (2)Å3, and Z = 2. The structures consist of [M4S22]6— anions composed of two M2S11 sub‐units which are linked into M4S22 units via terminal sulfur ligands. The anions are well separated by the K+ cations. Differences between the structures of the title compounds and those with the heavier alkali cations Rb+ and Cs+ are caused by the different arrangement of the [M4S22]6— anions around the cations and the different S2—/S22— binding modes. The thermal behaviour of both modifications was investigated using differential scanning calorimetry (DSC). From these investigations there is no hint for a polymorphic transition between the two forms. After heating crystals of form II above the melting point and cooling the melt to room temperature a crystalline powder of form I can be isolated.  相似文献   

5.
Chloroselenates(IV): Synthesis, Structure, and Properties of [As(C6H5)4]2Se2Cl10 and [As(C6H5)4]Se2Cl9 The Se2Cl102? and Se2Cl9? anions were prepared, as the first dinuclear haloselenates(IV), from the reaction of (SeCl4)4 with stoichiometric quantities of chloride ions in POCl3 solutions; they were isolated as yellow crystalline As(C6H5)4+ salts. Complete X-ray structural analyses at ?130°C of [As(C6H5)4]2Se2Cl10 ( 1 ) (space group P1 , a = 10.296(7), b = 11.271(6), c = 12.375(8) Å, = 74.17(5)°, α = 81.38(5)°, β = 67.69(4)°, V = 1276 Å3) and of [As(C6H5)4]Se2Cl9 ( 2 ) (space group P21/n, a = 12.397(5), b = 17.492(6), c = 14.235(4) Å, α 93.25(3)°, V = 3082 Å3) show in both cases two distorted octahedral SeCl6 groups connected through a common edge in 1 and a common face in 2 . The terminal Se? Cl bonds (average 2.317 Å in 1 , 2.223 Å in 2 ) are much shorter than the Se? Cl bridges (av. 2.661 Å in 1 , 2.652 Å in 2 ). The stereochemical activity of the SeIV lone electron pair causes severe distortion of the central Se2Cl2 ring in the centrosymmetric Se2Cl102? ion. The vibrational spectra of the anions are reported.  相似文献   

6.
Systematic investigations of ternary barium selenoborates led to the new compounds BaB2Se6 and Ba2B4Se13 which represent the first alkaline earth perselenoborates. Appropriate amounts of barium selenide, boron and selenium were filled into carbon coated silica tubes which were sealed under vacuum. The high temperature reactions and subsequent annealing processes were performed in horizontal one‐zone furnaces. By means of single crystal X‐ray diffraction the structure of BaB2Se6 was determined to be orthorhombic, space group Cmca (no. 64) with a = 11.326(2)Å, b = 7.659(2)Å and c = 10.315(2)Å, while for Ba2B4Se13 the monoclinic space group P21/c (no. 14) was found with a = 12.790(3)Å, b = 11.560(2)Å, c = 12.862(3)Å and β = 103.22(3)°. BaB2Se6 exhibits infinite layers of [B2Se62—]‐anions oriented parallel to the a‐b‐plane. Each layer consists of B2Se2four‐membered rings, which are connected via four diselenide bridges. Thus, B6Se12‐rings are formed in which the barium cations are located. Likewise, in Ba2B4Se13 polymeric [B4Se134—]‐anions are running parallel to the a‐c‐plane resulting in a new layered structure type built of alternating B2Se4‐ and B2Se3‐rings which are connected by perseleno contacts.  相似文献   

7.
The reaction of Rb2S3, Ta and S in a 1.3 : 1 : 5.6 molar ratio at 400 °C yields red‐orange crystals of the new ternary compound Rb6Ta4S22 being the first tantalum polysulfide containing the dimeric complex anion [Ta4S22]6–. The polysulfide anions are composed of two Ta2S11 subunits which are linked to Ta4S22 units via terminal sulfur ligands. The Ta5+ centers are coordinated by S22– and S2– ligands according to [(Ta22‐η21‐S2)32‐S2)(S)2)22‐η11‐S2)]6–. Every Ta5+ ion is surrounded by seven sulfur ions forming a strongly distorted pentagonal bipyramid. In the crystal structure the discrete [Ta4S22]6– anions are stacked parallel to the crystallographic b‐axis. The Rb+ cations are located between these stacks. Rb6Ta4S22 crystallizes in the monoclinic space group P21/c (No. 14) with a = 11.8253(9) Å, b = 7.9665(4) Å, c = 19.174(2) Å, β = 104.215(9)°, V = 1751.0(2) Å3, Z = 2.  相似文献   

8.
The new ternary potassium tantalum polysulfide K4Ta2S11 crystallizing in the triclinic space group P1 with a = 7.465(2), b = 11.441(3), c = 11.534(3) Å, α = 68.66(2), β = 86.59(2) and γ = 83.09(2)° represents a second modification of the already known orthorhombic form, space group Pca21 with a = 13.166(2), b = 7.449(2) and c = 18.000(2) Å. The interatomic distances and angles within the Ta2S114– anions of both forms are very similar, but significant differences are observed for the S…S distances between neighboured anions. Temperature dependent single crystal X‐ray experiments yield thermal expansion coefficients of 9.88(30) and 9.44(4) 10–5 K–1 for the triclinic and orthorhombic compound, respectively. The higher density for the orthorhombic form indicates that this modification is the thermodynamical more stable form at low temperatures. This assumption is supported by calculations of the electrostatic contributions to the lattice energies using MAPLE (Madelung part of lattice energy). The lattice energy of the orthorhombic form is about 46 kJ mol–1 larger than that of the triclinic modification. Small differences are observed in the MIR (Medium Infrared Range) spectra of the two dimorphs which correlate well with the slightly different Ta = S bond lengths within the Ta2S114– anions. The compounds were also characterized using UV/Vis reflectance spectroscopy.  相似文献   

9.
Red crystals of [NMeEt3]2n[TeBr6(Se2Br2)3]n ( 1 ) were isolated when selenium and bromine (1:1) were allowed to react in acetonitrile solution in the presence of tellurium(IV) bromide and methyltriethylammonium bromide (1:2). The salt 1 crystallizes in the monoclinic space group C2/c with the cell dimensions a = 27.676(6) Å, b = 9.665(2) Å, c = 18.796(4) Å and ß = 124.96(3)° (120 K). The [TeBr6(Se2Br2)3]2— anions contain nearly regular octahedral [TeBr6]2— ions which are incorporated into a polymeric chain by bonding contacts between 3 facial bromo ligands and 3 Se2Br2 molecules, one of which is situated on the twofold symmetry axis. The distances between the μBr ligands and the SeI atoms of the Se2Br2 molecules are observed in the range 3.308(2) — 3.408(2) Å and can tentatively be interpreted as donor‐acceptor bonds with μBr as donors and Se2Br2 as acceptors. The TeIV—Br distances are in the range 2.669(1) — 2.687(1) Å. The bond lengths in the connecting Se2Br2 molecules are: SeI—SeI = 2.267(2) and 2.281(2) Å, SeI—Br = 2.340(1), 2.353(1) and 2.337(1) Å.  相似文献   

10.
Na2B2Se7, K2B2S7, and K2B2Se7: Three Perchalcogenoborates with a Novel Polymeric Anion Network Na2B2Se7 (I 2/a; a = 11.863(4) Å, b = 6.703(2) Å, c = 13.811(6) Å, β = 109.41(2)°; Z = 4), K2B2S7 (I 2/a; a = 11.660(2) Å, β = 6.827(1) Å, c = 12.992(3) Å, β = 106.78(3)°; Z = 4), and K2B2Se7 (I 2/a; a = 12.092(4) Å, b = 7.054(2) Å, c = 13.991(5) Å, β = 107.79(3)°; Z = 4) were prepared by reaction of stoichiometric amounts of sodium selenide (potassium sulfide) with boron and sulfur or of potassium selenide and boron diselenide, respectively, at 600°C with subsequent annealing. The crystal structures consist of polymeric anion chains of composition ([B2S7]2?)n or ([B2Se7]2?)n formed by spirocyclically connected five-membered B2S3 (B2Se3) rings and six-membered B2S4 (B2Se4) rings. The nine-coordinate alkaline metal cations are situated in between.  相似文献   

11.
Li6+2x[B10Se18]Sex (x ≈ 2), an Ion‐conducting Double Salt Li6+2x[B10Se18]Sex (x ≈ 2) was prepared in a solid state reaction from lithium selenide, amorphous boron and selenium in evacuated carbon coated silica tubes at a temperature of 800 °C. Subsequent cooling from 600 °C to 300 °C gave amber colored crystals with the following lattice parameters: space group I2/a (at 173 K); a = 17.411(1) Å, b = 21.900(1) Å, c = 17.820(1) Å, β = 101.6(1)°. The crystal structure contains a well‐defined polymeric selenoborate network of composition ([B10Se16Se4/2]6?)n consisting of a system of edge‐sharing [B10Se16Se4/2] adamantanoid macro‐tetrahedra forming large channels in which a strongly disorderd system of partial occupied Li+ cations and additional disordered Se2? anions is observed. The crystal structure of the novel selenoborate is isotypic to Li6+2x[B10S18]Sx (x ≈ 2) [1]. X‐ray and 7Li magic‐angle spinning NMR data suggest that the site occupancies of the three crystallographically distinct lithium ions exhibit a significant temperature dependence. The lithium ion mobility has been characterized by detailed temperature dependent NMR lineshape and spin‐lattice relaxation measurements.  相似文献   

12.
The reaction of one equivalent of In with a molten flux of (Ph4P)2Se5 and P2Se5 (1 : 2), at 250 °C gave the (Ph4P)[In(P2Se6)] ( I ). Stoichiometric elemental synthesis at 750 °C produced the Cs5In(P2Se6)2 ( II ). The thin, yellow crystals of ( I ), and the irregular, dark orange crystals of ( II ), appear to be air- and water-stable. Compound ( I ) crystallizes in the monoclinic space group C2/c (no. 15) and at 23 °C: a = 23.127(7) Å, b = 6.564(1) Å, c = 19.083(3) Å, β = 97.42(2)°, V = 2873(1) Å3, Z = 4, final R/Rw = 4.4/5.2%. Compound ( II ) crystallizes in the tetragonal space group P42/m (no. 84) and at 23 °C: a = b = 13.886(1) Å, c = 7.597(2) Å, V = 1464.9(3) Å3, Z = 2, final R/Rw = 3.9/5.1%. Compound ( I ) contains infinite [In(P2Se6)]nn– with a structure related to that of K2FeP2Se6. Compound ( II ) contains the discrete [In(P2Se6)2]5– which can be viewed as a fragment of the [In(P2Se6)]nn– chain.  相似文献   

13.
Brown crystals of [NMe4]4[(Se4Br10)2(Se2Br2)2] ( 1 ) were obtained from the reaction of selenium and bromine in acetonitrile in the presence of tetramethylammonium bromide. The crystal structure of 1 was determined by X‐ray diffraction and refined to R = 0.0297 for 8401 reflections. The crystals are monoclinic, space group P21/c with Z = 4 and a = 12.646(3) Å, b = 16.499(3) Å, c = 16.844(3) Å, β = 101.70(3)° (123 K). In the solid‐state structure, the anion of 1 is built up of two [Se4Br10]2– ions. Each shows a triangular arrangement of three planar SeBr4 units sharing a common edge through two μ3‐bridging bromine atoms, and one SeBr2 molecule, which is linked to the SeII atoms of two SeBr4 units; between the Se4Br102– ions a dimerized Se2Br2 molecule (Se4Br4) is situated and one SeI atom of each Se2Br2 molecule has two weak contacts [3.3514(14) Å and 3.3952(11) Å] to two bromine atoms of one SeBr4 unit. Four SeI atoms of a dimerized Se2Br2 molecule are in a almost regular planar tetraangular arrangement. Contacts between the SeII atom of the SeBr2 molecule and the SeII atoms of two SeBr4 units are 3.035(1) Å and 3.115(1) Å, and can be interpreted as donor‐acceptor type bonds with the SeII atoms of SeBr4 units as donors and the SeBr2 molecule as acceptor. The terminal SeII–Br and μ3‐Br–SeII bond lengths are in the ranges 2.3376(10) to 2.4384(8) Å and 2.8036(9) to 3.3183(13) Å, respectively. The bond lengths in the dimerized Se2Br2 molecule are: SeI–SeI = 2.2945(8) Å and 3.1398(12), SeI–Br = 2.3659(11) and 2.3689(10) Å.  相似文献   

14.
Brown crystals of [PPh4]2[Se2Br6] ( 1 ) and [PEtPh3]2[Se2Br6] ( 2 ) were obtained when selenium and bromine reacted in acetonitrile solution in the presence of tetraphenylphosphonium bromide and ethyltriphenylphosphonium bromide, respectively. The crystal structure of 2 has been determined by X‐ray methods and refined to R = 0.0420 for 4161 reflections. The crystals are monoclinic, space group P21/n with Z = 2 and a = 13.055(3) Å, b = 12.628(3) Å, c = 13.530(3) Å, β = 92.40(3)° (293(2) K). In the solid state structure of 2 the dinuclear hexabromo‐diselenate(II) anion is centrosymmetric and consists of two distorted almost square‐planar SeBr4 units sharing a common edge through two bridging Br atoms. The terminal SeII–Br bond distances are found to be 2.419(1) and 2.445(1) Å, the bridging μBr–SeII bond distances 2.901(1) and 2.802(1) Å.  相似文献   

15.
The Red crystals of [PPh4]2[Se2Br6(Se2Br2)2] ( 1 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of tetraphenylphosphonium bromide. The crystal structure of 1 has been determined by X‐ray diffraction and refined to R = 0.0201 for 4024 reflections. The crystals are triclinic, space group with Z = 2 and a = 11.2757(4) Å, b = 12.3347(5) Å, c = 12.4948(5) Å, α = 113.152(4)°, β = 114.745(4)°, γ = 91.208(3)° (120(2) K). In the solid state the anion of 1 is built up of the Se2Br6 core and two Se2Br2 molecules each of which is linked to one of the trans‐positioned terminal Brt atoms of the Se2Br6 core. The central Se2Br6 part consists of a nearly planar arrangement of two planar SeBr4 units sharing a common edge through two μ2‐bridging Br atoms. The contact between the Brt and the SeI atom of the Se2Br2 molecule is 3.0872(5) Å and can be interpreted as a bond of the donor‐acceptor type with the Brt as donor and the Se2Br2 molecule as acceptor. The terminal SeII–Br and μ2Br–SeII bond lengths are 2.3654(4), 2.6699(5) Å and 2.5482(5), 3.0265(5) Å, respectively. The bond lengths in the coordinated Se2Br2 molecule are: SeI–SeI = 2.2686(5) Å, SeI–Br = 2.3779(5) and 2.3810(5) Å.  相似文献   

16.
The brown crystals of [PMePh3]2[Se2Br6] ( 1 ) and red crystals of [PMePh3]2[SeBr6(SeBr2)2] ( 2 ) were obtained when selenium and bromine reacted in the solution of acetonitrile in the presence of methyltriphenylphosphonium bromide. The crystal structures of 1 and 2 has been determined by the X‐ray methods and refined to R = 0.0373 for 2397 reflections and 0.0397 for 3417 reflections, respectively. The salt 1 crystallizes in the monoclinic space group P21/n with the cell dimensions a = 13.202(5) Å, b = 11.954(4) Å, c = 13.418(6) Å, β = 93.08(4)° (193(2)). The crystals of 2 are triclinic, space group with the cell dimensions a = 10.266(3) Å, b = 11.311(3) Å, c = 11.619(2) Å, α = 108.87(2)°, β = 105.72(2)°, γ = 99.40(2)° (193(2) K). In the solid state structure of 1 the dinuclear hexabromo‐diselenate(II) anion is centrosymmetric and consists of two distorted almost square planar SeBr4 units sharing a common edge through two μ‐bridging Br atoms. The terminal SeII–Br bonds are 2.3984(11) and 2.4273(11) Å, whereas the bridging μBr–SeII bonds are 2.7817(11) and 2.9081(12) Å. In the solid state the trinuclear [SeBr6(SeBr2)2]2? anion of 2 is centrosymmetric too and contains a nearly regular [SeBr6] octahedron where the four equatorial bromo ligands each have developed bonds to the SeII atoms of the SeBr2 molecules. The contacts between the bridging bromo and the SeII atoms of the SeBr2 molecules are 3.0603(15) and 3.1043(12) Å, and can be interpreted as bonds of the donor‐acceptor type with the bridging bromo ligands as donors and the SeBr2 molecules as acceptors. The SeIV–Br distances are in the range 2.5570(9)–2.5773(11) Å and the SeII–Br bond lengths in coordinated SeBr2 molecules – 2.3411(12) and 2.3421(10) Å.  相似文献   

17.
Cubic [Ta6Br12(H2O)6][CuBr2X2]·10H2O and triclinic [Ta6Br12(H2O)6]X2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O (X = Cl, Br, NO3) cocrystallize in aqueous solutions of [Ta6Br12]2+ in the presence of Cu2+ ions. The crystal structures of [Ta6Br12(H2O)6]Cl2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 1 ) and [Ta6Br12(H2O)6]Br2·trans‐[Ta6Br12(OH)4(H2O)2]·18H2O ( 3 )have been solved in the triclinic space group P&1macr; (No. 2). Crystal data: 1 , a = 9.3264(2) Å, b = 9.8272(2) Å, c = 19.0158(4) Å, α = 80.931(1)?, β = 81.772(2)?, γ = 80.691(1)?; 3 , a = 9.3399(2) Å, b = 9.8796(2) Å, c = 19.0494(4) Å; α = 81.037(1)?, β = 81.808(1)?, γ = 80.736(1)?. 1 and 3 consist of two octahedral differently charged cluster entities, [Ta6Br12]2+ in the [Ta6Br12(H2O)6]2+ cation and [Ta6Br12]4+ in trans‐[Ta6Br12(OH)4(H2O)2]. Average bond distances in the [Ta6Br12(H2O)6]2+ cations: 1 , Ta‐Ta, 2.9243 Å; Ta‐Bri , 2.607 Å; Ta‐O, 2.23 Å; 3 , Ta‐Ta, 2.9162 Å; Ta‐Bri , 2.603 Å; Ta‐O, 2.24 Å. Average bond distances in trans‐[Ta6‐Br12(OH)4(H2O)2]: 1 , Ta‐Ta, 3.0133 Å; Ta‐Bri, 2.586 Å; Ta‐O(OH), 2.14 Å; Ta‐O(H2O), 2.258(9) Å; 3 , Ta‐Ta, 3.0113 Å; Ta‐Bri, 2.580 Å; Ta‐O(OH), 2.11 Å; Ta‐O(H2O), 2.23(1) Å. The crystal packing results in short O···O contacts along the c axes. Under the same experimental conditions, [Ta6Cl12]2+ oxidized to [Ta6Cl12]4+ , whereas [Nb6X12]2+ clusters were not affected by the Cu2+ ion.  相似文献   

18.
Selenostannates from Aqueous Solution, Preparation and Structure of Na4Sn2Se6 · 13 H2O The dimeric anion Sn2Se64? is prepared by reaction of SnSe2 with alkali metal selenide in a 1:1 molar ratio. The orange-red hydrated sodium salt Na4Sn2Se6 · 13 H2O is characterized by a complete X-ray structure analysis and by its vibrational spectrum. The compound is triclinic (P1 ) with a = 7.106(2), b = 10.330(2), c = 19.009(4) Å, α = 78.60(2), β = 85.66(2), γ = 72.85(2)° (?130°C), Z = 2. It contains isolated Sn2Se64? anions consisting of two edge-sharing tetrahedra [Sn? Se 2.456(1)–2.589(1) Å] which are in contact to the hydrated Na+ ions within an extensive hydrogen bridge system. Raman-active vibrations are observed at 260, 202, 188, 116, 93, and 78 cm?1.  相似文献   

19.
The reaction of Se4[Mo2O2Cl8] with Se4[MCl6] (M = Zr, Hf) or of Se, SeCl4, MoOCl4, and MCl4 (M = Zr, Hf) at 120 °C in sealed evacuated glass ampoules gives (Se4)2[Mo2O2Cl8][MCl6] (M = Zr, Hf) in the form of dark‐green, air sensitive crystals in quantitative yield. The crystal structure analyses of both isotypic compounds (monoclinic, P21/c, Z = 2, a = 1336(2), b = 716(1), c = 1518(4) pm, β = 106.0(2)° for M = Zr; a = 1334.1(8), b = 715.03(9), c = 1518.2(3) pm, β = 106.00(2)° for M = Hf) show the presence of square‐planar Se42+, of dinuclear [Mo2O2Cl8]2—, and of almost regular octahedral [MCl6]2— ions. X‐ray crystallographic investigations on (Se4)2[Mo2O2Cl8][ZrCl6] give no hint for solid state phase transitions between —160 and 200 °C. This is in contrast to the related compounds Se4[Mo2O2Cl8] and Se4[ZrCl6] which both undergo phase transitions accompanied by reorientation of the cations and anions. (Se4)2[Mo2O2Cl8][ZrCl6] is paramagnetic and obeys the Curie‐Weiss law with a Weiss constant of —4(7) K indicating only weak interaction between the paramagnetic centres. The magnetic moment of 1.7(1) μB is consistent with the presence of MoV (d1 configuration) and supports the ionic formula.  相似文献   

20.
Chalcogenohalogenogallates(III) and -indates(III): A New Class of Compounds for Elements of the Third Main Group. Preparation and Structure of [Ph4P]2[In2SX6], [Et4N]3[In3E3Cl6] · MeCN and [Et4N]3[Ga3S3Cl6] · THF (X = Cl, Br; E = S, Se) [In2SCl6]2?, [In2SBr6]2?, [In3S3Cl6]3?, [In3Se3Cl6]3?, and [Ga3S3Cl6]3? were synthesised as the first known chalcogenohalogeno anions of main group 3 elements. [Ph4P]2[In2SCl6] ( 1 ) (P1 ; a = 10.876(4) Å, b = 12.711(6) Å, c = 19.634(7) Å, α = 107.21(3)°, β = 96.80(3)°, γ = 109.78(3)°; Z = 2) and [Ph4P]2[In2SBr6] ( 2 ) (C2/c; a = 48.290(9) Å, b = 11.974(4) Å, c = 17.188(5) Å, β = 93.57(3)°, Z = 8) were prepared by reaction of InX3, (CH3)3SiSSi(CH3)3 and Ph4PX (X = Cl, Br) in acetonitrile. The reaction of MCl3 (M = Ga, In) with Et4NSH/Et4NSeH in acetonitrile gave [Et4N]3[In3S3Cl6] · MeCN ( 3 ) (P21/c; a = 17.328(4) Å, b = 12.694(3) Å, c = 21.409(4) Å, β = 112.18(1)°, Z = 4), [Et4N]3[In3Se3Cl6] · MeCN ( 4 ) (P21/c; a = 17.460(4) Å, b = 12.816(2) Å, c = 21.513(4) Å, β = 112.16(2)°, Z = 4), and [Et4N]3[Ga3S3Cl6] · THF ( 5 ) (P21/n; a = 11.967(3) Å, b = 23.404(9) Å, c = 16.260(3) Å, β = 90.75(2)°, Z = 4). The [In2SX6]2? anions (X = Cl, Br) in 1 and 2 consist of two InSX3 tetrahedra sharing a common sulfur atom. The frameworks of 3, 4 and 5 each contain a six-membered ring of alternating metal and chalcogen atoms. Two terminal chlorine atoms complete a distorted tetrahedral coordination sphere around each metal atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号