首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The novel solvent dimethyl sulfoxide (DMSO)/tetrabutylammonium fluoride trihydrate (TBAF . 3H(2)O) was studied for acetylation of linters cellulose. In order to control the degree of substitution (DS), acetylation of the macromolecule was carried out at different reaction time and temperature, molar ratio of reactants, as well as under variation of the concentration of TBAF . 3H(2)O in solution. Cellulose acetate (CA) was accessible with DS ranging from 0.43 to 2.77. The change in concentration of TBAF . 3H(2)O in DMSO showed a strong influence on DS. The most appropriate reaction conditions for acetylation of linters cellulose regarding maximal DS were evaluated. The structure of the CA was characterized by means of FTIR and NMR spectroscopy. The solubility of the CA depends not only on the DS but also on the reaction conditions applied, indicating a different distribution of acetate moieties both within and between polymer chains.  相似文献   

2.
New solvents based on DMSO in combination with alkylammonium fluorides, in particular TBAF . 3H(2)O and BTMAF . H(2)O, were established as media for homogeneous functionalization of cellulose. Even DMSO in combination with freshly prepared, anhydrous TBAF, obtained by the reaction of tetrabutylammonium cyanide and hexafluorobenzene, dissolves cellulose. In contrast, a mixture of DMSO and tetramethylammonium fluoride does not dissolve cellulose. The solvents were characterized by capillary viscosity, which showed that a cellulose solution of DMSO/BTMAF . H(2)O possesses a lower viscosity at comparable cellulose concentrations compared with DMSO/TBAF . 3H(2)O. The determination of the degree of polymerization of the starting cellulose (microcrystalline cellulose, spruce sulfite pulp, and cotton linters), and of the regenerated samples, shows that degradation of the polymer depends on the dissolution time, temperature and on the ammonium fluoride used. The results of different homogeneous reactions including acylation and carbanilation of cellulose in the solvents were compared with those of the most-commonly-applied solvent N,N-dimethylacetamide/LiCl. The products were characterized by elemental analysis, (1)H- and (13)C NMR spectroscopy (additionally after perpropionylation) and FTIR spectroscopy.  相似文献   

3.
In contrast to many cellulose derivatives, the cellulose O-silyl ethers with bulky side groups exhibit scarcely a change in glass transition temperature by a variation of the degree of substitution (DS) or degree of polymerization (DP) or by introducing phenyl carbamate groups for the remaining hydroxyls along the main chain. However, a substitution of these hydroxyls by flexible acetate groups lowers the glass transition temperature considerably. The secondary dispersion (relaxation) behavior is strongly influenced by the various substituents and can be correlated to specific motions of the molecules. The dynamic mechanical properties are also dependent on the kind of preconditioning of the samples.  相似文献   

4.
Two types of Sisal cellulose were studied as starting material for homogeneous acylation in the solvent dimethyl sulfoxide (DMSO)/tetrabutylammonium fluoride trihydrate (TBAF). The native Sisal cellulose investigated contains 14% hemicellulose (mainly composed of xylose) as confirmed by 13C-NMR spectroscopy in DMSO-d6/TBAF and HPLC analysis after complete polymer degradation. Alkali treatment of Sisal cellulose decreases the amount of hemicellulose, the degree of polymerization and the crystallinity. Both Sisal cellulose samples can be dissolved in DMSO/TBAF after treatment at elevated temperature. GPC measurements showed high aggregation in the solution. Different homogeneous acylation reactions using carboxylic acid anhydrides and vinyl esters were carried out, showing a pronounced tendency of the anhydride towards hydrolysis in the solvent. This disadvantage can be diminished by decreasing the amount of the salt hydrate (TBAF trihydrate) or by a distillative removal of the majority of water. A strong interaction of the polymer with the water in the solvent was observed.  相似文献   

5.
Water-soluble sodium deoxycellulosesulfonate (DCS-Na) was prepared by nucleophilic substitution of the p-toluenesulfonyl (tosyl) groups of cellulose p-toluenesulfonate (tosylcellulose) by a sulfonate group in aqueous Na2SO3 solution. In the substitution, the yield and degree of substitution (DS) by the sulfonate group (DSsul) were found to increase with increasing reaction temperature and with reaction time, and reached up to 80% and 0.28, respectively, at 100 °C for 72 h. Although the DS of the tosyl group (DStosyl) decreased with increasing reaction temperature and with reaction time, a respectable amount of tosyl group still remained even at 100 °C for 72 h. Furthermore, the intrinsic viscosity, [], of the DCS-Na obtained decreased considerably with increasing reaction temperature and with reaction time. The decreases in DStosyl and [] were very similar to each other in that increasing DSsul was independent of the reaction temperature and the reaction time. The similarity of the decreases suggests that the mechanisms of scission of the cellulose backbone and the leaving of the tosyl groups (from tosylcellulose) in the nucleophilic substitution were closely related to each other. The partial conversion of the tosyl group in the tosylcellulose to the sulfonate group, by the nucleophilic substitution, was also confirmed by the change in the IR absorption spectrum. The product could be considered to be a ter-polymer from the point of view of the AGU (anhydro glucose unit). Thus, we have AGU-co-DAGUS-Na-tosyl AGU as possible options  相似文献   

6.
Grafting of cellulosic materials, including bleached kraft pulp, has been achieved by electrophilic polymerization. The process involves two steps, (i) the tosylation of the cellulosic substrate by reaction with tosyl chloride, (ii) polymerization of 2-methyl-2-oxazoline in contact with the esterified cellulose. The grafting efficiency was generally in the range of 20 to 50 %, which was attributed to the occurrence of a transfer reaction specific to the cellulose.  相似文献   

7.
13C-NMR spectra of trityl cellulose (Tr-Cell), tosyl cellulose (Ts-Cell), cellulose S-methyl xanthate (Cell-M-Xan), and cellulose formate (CF) in dimethylsulfoxide-d6 were analyzed at 50.4 MHz. It was found that the distribution of substituents in the anhydroglucose units of these cellulose derivatives can be estimated from their ring carbon spectra. The results showed that (i) in Tr-Cell having degree of substitution (DS) lower than 1, the hydroxyl groups at C-6 carbon position are selectively tritylated, (ii) in the case of Ts-Cell, the difference in the relative DS value among three different types of hydroxyl groups is not large, although the relative reactivities of hydroxyl groups toward tosylation decrease in the order C-6 > C-2 > C-3, (iii) in Cell-M-Xan, the hydroxyl groups at C-3 carbon position are mainly substituted, and (iv) the ease of formylation is C-6 > C-2 > C-3. The 100.8 MHz 13C-NMR spectra of O-methyl cellulose (MC) revealed that the reactivity order in commercial MC prepared from alkali cellulose is C-6 ? C-2 > C-3. Concerning MC, its water solubility was also discussed in terms of the distribution of substituents along the cellulose chain.  相似文献   

8.
Novel bulky esters of cellulose were synthesized homogeneously, applying the solvent systems DMA/LiCl or DMSO/TBAF, by conversion of the biopolymer with aryl polyester dendrons. The carboxylic acid moieties were efficiently activated in situ with CDI or the acid chloride was applied. Cellulose esters with DS values of up to 0.7 were obtained. The functionalization pattern was analyzed by different NMR spectroscopic techniques indicating that not only position 6 (primary hydroxyl group) but also the secondary one at position 2 was included in the reaction.  相似文献   

9.
Summary: Ionic Liquids (IL) were applied as solvent and reaction medium in the field of homogeneous cellulose chemistry. Whereas investigations on tosylation and nucleophilic displacement reactions lead to unexpected products the application of the Huisgen reaction was successful. The standard conditions for tosylation of cellulose using the IL 1-ethyl-3-methylimidazolium acetate (EMImAc) as solvent lead exclusively to cellulose acetate, due to activation of the acetate ion of the IL by forming a mixed anhydride with p-toluenesulfonyl chloride. Further investigations showed that the anions of EMImAc and 1-ethyl-3-methylimidazolium chloride (EMImCl) are able to act as nucleophiles, thus substituting tosyl groups of tosylcellulose and forming unexpected products. Using EMImAc as solvent first to third generation propargyl-polyamidoamine (PAMAM) dendrons were attached to 6-azido-6-deoxy cellulose (degree of substitution, DS 0.75) utilising the copper catalysed Huisgen reaction leading to novel dendronized cellulose derivatives with DS values of up to 0.60. Detailed structure characterisation of the products, including elemental analysis, FTIR and NMR spectroscopy, indicates that the synthesis approach leads to products without impurities or remaining IL.  相似文献   

10.
Alpha- and beta-linked 1,3-glucans have been subjected to conversion with p-toluenesulfonic acid (tosyl) chloride and triethylamine under homogeneous reaction conditions in N,N-dimethyl acetamide/LiCl. Samples with a degree of substitution of tosyl groups (DSTs) of up to 1.91 were prepared by applying 5 mol reagent per mole repeating unit. Hence, the reactivity of α-1,3-glucan is comparable with cellulose and starch, while the β-1,3-linked glucan curdlan is less reactive. The samples dissolve in aprotic dipolar media independent of the DSTs and possess a solubility in less polar solvents that depends on the DSTs. NMR studies on the tosyl glucans and of the peracylated derivatives showed a preferred tosylation of position 2 of the repeating unit. However, the selectivity is less pronounced compared with starch. It could be concluded that the α-configurated glycosidic bond directs tosyl groups towards position 2.  相似文献   

11.
利用间歇式高压反应釜,在反应温度200~330 ℃、乙醇用量0~150 mL条件下,考察了亚/超临界乙醇直接液化秸秆纤维素的解聚行为,并初步探讨了其液化机理。结果表明,反应温度、乙醇用量和反应停留时间对秸秆纤维素的液化均有显著影响,反应温度由200 ℃升高至330 ℃,重油和气体收率分别增加了12.55%、28.83%;乙醇用量增加,反应压力随之升高,乙醇进入超临界状态,残渣和气体收率相比单纯热裂解分别降低11.10%和8.44%。通过GC/MS、FT-IR分析生物油组分和残渣特性,表明秸秆纤维素在亚/超临界乙醇中断键裂解,且酮类和乙酯类化合物是生物油的主要成分。  相似文献   

12.
The regioselective esterification of cellulose by reaction with bulky acyl halides including pivaloyl chloride, adamantoyl chloride and 2,4,6-trimethylbenzoyl chloride was studied. Functionalization conditions to achieve a given degree of substitution (DS) and the resulting ester substitution pattern were described in detail. One- and two-dimensional NMR spectroscopy techniques were used to confirm the structure of the esters obtained. We compared the effects on substitution of using different esterifying reagents and solvent systems including DMAc/LiCl, DMSO/TBAF, and ionic liquids (ILs).  相似文献   

13.
The ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as a reaction medium was studied for the synthesis of cellulose benzoates by homogeneous acylation of dissolved cellulose with benzoyl chlorides in the absence of any catalysts. Cellulose benzoates with a degree of substitution (DS) in the range from about 1 to 3.0 were accessible under mild conditions. The DS of cellulose derivatives increased with the increase of the molar ratio of benzoyl chloride/anhydroglucose unit (AGU) in cellulose, reaction time, and reaction temperature. Benzoylation of cellulose with some 4-substituted benzoyl chlorides including 4-toluoyl chloride, 4-chlorobenzoyl chloride and 4-nitrobenzoyl chloride was also readily carried out under mild conditions. Furthermore, regioselectively substituted mixed cellulose esters were synthesized in this work. All products were characterized by means of FT-IR, 1H-NMR, and 13C-NMR spectroscopy. In addition, at the end of benzoylation of cellulose, the ionic liquid AmimCl was easily recycled. When the recycled AmimCl was used as the reaction media, the cellulose benzoate with a similar DS was obtained under comparable reaction conditions.  相似文献   

14.
Direct conversion of cellulose into 5-hydroxymethylfurfural(HMF) was performed by using single or combined metal chloride catalysts in 1-ethyl-3-methylimidazolium chloride(Cl) ionic liquid.Our study demonstrated formation of 2-furyl hydroxymethyl ketone(FHMK),and furfural(FF) simultaneously with the formation of HMF.Various reaction parameters were addressed to optimize yields of furan derivatives produced from cellulose by varying reaction temperature,time,and the type of metal chloride catalyst.Catalytic reaction by using FeCl3 resulted in 59.9% total yield of furan derivatives(HMF,FHMK,and FF) from cellulose.CrCl3 was the most effective catalyst for selective conversion of cellulose into HMF(35.6%) with less concentrations of FHMK,and FF.Improving the yields of furans produced from cellulose could be achieved via reactions catalyzed by different combinations of two metal chlorides.Further optimization was carried out to produce total furans yield 75.9% by using FeCl3/CuCl2 combination.CrCl3/CuCl2 was the most selective combination to convert cellulose into HMF(39.9%) with total yield(63.8%) of furans produced from the reaction.The temperature and time of the catalytic reaction played an important role in cellulose conversion,and the yields of products.Increasing the reaction temperature could enhance the cellulose conversion and HMF yield for short reaction time intervals(5~20 min).  相似文献   

15.
Summary: The copper‐catalyzed Huisgen reaction as a typical example of click chemistry was realized with the polysaccharide cellulose for the first time. The generality, selectivity, and the efficiency of click chemistry perfectly fit the requirements of polysaccharide modification, which is demonstrated by the introduction of triazole‐spacer bound functional groups, i.e., carboxylic ester, thiophene, and aniline moieties. Azide moieties introduced into cellulose via the tosyl derivative were simply transferred with ethynyl compounds under Cu(I) catalysis and mild and easily applicable conditions. Hydrolytically stable cellulose derivatives soluble in organic solvents, e.g., DMSO or DMF with DS up to 0.9 are obtained. The triazole substituted cellulose derivatives were characterized by elemental analysis, FTIR, 1H NMR, and 13C NMR spectroscopies and show no impurities or substructures resulting from side reactions.

6‐Azido‐6‐deoxy cellulose.  相似文献   


16.
To obtain adsorbents for boron(III) derived from a natural polymer, two forms (powder and fiber) of N-methylglucamine-type cellulose derivatives were newly synthesized. After the graft polymerization of two forms of cellulose with vinyl monomer having epoxy groups, the N-methylglucamine-type cellulose derivatives were obtained by the reaction of the grafted cellulose with N-methylglucamine. The adsorption capacities of the cellulose derivatives for boron(III) were the same levels as that of a commercially available N-methylglucamine-type polystyrene resin. However, the cellulose derivatives adsorbed boron(III) more quickly than the polystyrene resin. The adsorption and desorption of boron(III) with a column method using the cellulose fiber were achieved at a higher flow rate than that using the polystyrene resin. In addition, the boron(III), adsorbed on the cellulose fiber column, was quantitatively recovered with dilute hydrochloric acid in 20- and 200-fold increased concentrations. Consequently, it was found that the cellulose derivatives were superior to the polystyrene resin as adsorbents for boron(III) for treatment of a large quantity of wastewater.  相似文献   

17.
Summary: Ammonium group containing cellulose derivatives are prepared from homogeneously synthesized cellulose p-toluenesulfonic acid esters (tosyl cellulose) by conversion with sodium azide and subsequent reduction of the azido moiety applying NaBH4/CoBr2/2,2′-bipyridine as reagent. Regarding the tosylation, cellulose samples of different degree of polymerization and hemicellulose content possess a different reactivity. The deoxyamino cellulose is water soluble in the protonated state. Elemental analysis, FTIR- and NMR spectroscopy were carried out to analyze the degree of substitution and functionalization pattern. It was also studied to synthesize deoxyazido celluloses without isolation of the tosyl cellulose. However, a predominant formation of deoxychloro moieties occurs.  相似文献   

18.
A mixed ester of ethyl cellulose (EC) has been prepared by reaction of trifluoroacetic anhydride with the residual hydroxy groups of ethyl cellulose. The mixed ester is soluble in tetrahydrofuran, dichloromethane, chloroform, benzene and pyridine. FTIR and NMR spectra show that hydroxy groups of ethyl cellulose were replaced by trifluoroacetoxy groups. The trifluoroacetyl ethyl cellulose (TFAEC) has higher selectivity for oxygen relative to nitrogen, in gas transport, than unmodified EC. Annealing at an elevated temperature further improves selectivity for oxygen, whilst subsequent ageing at ambient temperature partially reduces oxygen selectivity. The tensile strength of TFAEC is virtually the same as that of unmodified EC, but the elongation to break is 200% higher than for EC.  相似文献   

19.
以1,1-二苯乙烯(DPE)为阻聚剂,采用高压反应釜对玉米秸秆纤维素进行超临界乙醇液化,探究DPE浓度(用量)和反应温度对纤维素裂解碎片转化成液化产物的影响。结果表明,DPE浓度增加,挥发分收率降低了25.4%,生物油收率增加了19.9%,收率最高达39.8%,纤维素转化率有所下降;反应温度升高,纤维素转化率迅速增加到85.5%,挥发分也急剧升高,生物油收率最高为34.6%。GC-MS结果显示,生物油主要包括酮类、酯类、烃类等平台化合物以及较多的联苯化合物。DPE浓度过高,结合大量的纤维素裂解片段(乙基、羟基、甲基、氢等)形成联苯类化合物产生较强的空间位阻效应,使得纤维素裂解及活性片段转化成平台化合物的反应受到抑制,两者之间是一个竞争过程;温度升高,乙醇自由基活性增强,其对纤维素裂解的促进作用逐渐超过DPE对纤维素裂解的抑制作用,平台化合物收率有所升高。  相似文献   

20.
The effect of chemical structures of TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxy radical) derivatives and its analogous compounds on oxidation efficiency of C6 primary hydroxyls of wood cellulose was investigated using the NaClO/NaBr system at pH 10. Because the oxidation takes place selectively on the surfaces of cellulose microfibrils, individualized and surface-oxidized cellulose nanofibrils can be obtained by simple mechanical treatment in water, when sufficient amounts of carboxylate groups are formed homogeneously in cellulose microfibrils. 4-acetamide-TEMPO and 4-methoxy-TEMPO showed efficient catalytic behavior with short reaction times (<4 h) and high carboxylate contents (>1.1 mmol/g) in oxidation of wood cellulose, comparable to TEMPO. Correspondingly, these TEMPO derivatives as well as TEMPO gave high nanofibril yields >56%. On the other hand, the use of 4-hydroxy-TEMPO and 4-oxo-TEMPO resulted in the lowest efficiency in oxidation: oxidation times >24 h, carboxylate contents <0.3 mmol/g, and individualized and surface-oxidized nanofibril yields <2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号