首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pale pink crystals of Nd2(SeO3)2(SeO4) · 2H2O were synthesized under hydrothermal conditions from H2SeO3 and Nd2O3 at about 200 °C. X‐ray diffraction on powder and single‐crystals revealed that the compound crystallizes with the monoclinic space group C 2/c (a = 12.276(1) Å, b = 7.0783(5) Å, c = 13.329(1) Å, β = 104.276(7)°). The crystal structure of Nd2(SeO3)2(SeO4) · 2H2O is an ordered variant of the corresponding erbium compound. Eight oxygen atoms coordinate the NdIII atom in the shape of a bi‐capped trigonal prism. The oxygen atoms are part of pyramidal (SeIVO3)2? groups, (SeVIO4)2? tetrahedra and water molecules. The [NdO8] polyhedra share edges to form chains oriented along [010]. The selenate ions link these chains into layers parallel to (001). The layers are interconnected by the selenite ions into a three‐dimensional framework. The dehydration of Nd2(SeO3)2(SeO4) · 2H2O starts at 260 °C. The thermal decomposition into Nd2SeO5, SeO2 and O2 at 680 °C is followed by further loss of SeO2 leaving cubic Nd2O3.  相似文献   

2.
The title compound [Nd(OSiMe3)3]4 ( 1 ) was prepared by reaction of [Nd{N(SiMe3)2}3] with Me3SiOH in toluene at room temperature. Compound 1 crystallized from a concentrated toluene solution in the monoclinic space group P21/n with the lattice constants a = 15.144(1) Å, b = 25.142(1) Å, c = 20.391(1) Å and β = 103.755(2)°. In the solid state a tetramer is observed which shows Nd‐O bond distances in the range 2.129(2)‐2.675(2) Å.  相似文献   

3.
Three Alkali‐Metal Erbium Thiophosphates: From the Layered Structure of KEr[P2S7] to the Three‐Dimensional Cross‐Linkage in NaEr[P2S6] and Cs3Er5[PS4]6 The three alkali‐metal erbium thiophosphates NaEr[P2S6], KEr[P2S7], and Cs3Er5[PS4] show a small selection of the broad variety of thiophosphate units: from ortho‐thiophosphate [PS4]3? and pyro‐thiophosphate [S3P–S–PS3]4? with phosphorus in the oxidation state +V to the [S3P–PS3]3? anion with a phosphorus‐phosphorus bond (d(P–P) = 221 pm) and tetravalent phosphorus. In spite of all differences, a whole string of structural communities can be shown, in particular for coordination and three‐dimensional linkage as well as for the phosphorus‐sulfur distances (d(P–S) = 200 – 213 pm). So all three compounds exhibit eightfold coordinated Er3+ cations and comparably high‐coordinated alkali‐metal cations (CN(Na+) = 8, CN(K+) = 9+1, and CN(Cs+) ≈ 10). NaEr[P2S6] crystallizes triclinically ( ; a = 685.72(5), b = 707.86(5), c = 910.98(7) pm, α = 87.423(4), β = 87.635(4), γ = 88.157(4)°; Z = 2) in the shape of rods, as well as monoclinic KEr[P2S7] (P21/c; a = 950.48(7), b = 1223.06(9), c = 894.21(6) pm, β = 90.132(4)°; Z = 4). The crystal structure of Cs3Er5[PS4] can also be described monoclinically (C2/c; a = 1597.74(11), b = 1295.03(9), c = 2065.26(15) pm, β = 103.278(4)°; Z = 4), but it emerges as irregular bricks. All crystals show the common pale pink colour typical for transparent erbium(III) compounds.  相似文献   

4.
Transparent platelet‐shaped green single crystals of the title compound were obtained by the reaction of cesium bromide, praseodymium, sulfur, and red phosphorus in the molar ratio 1:2:8:2 with an excess of CsBr as flux in evacuated silica ampoules at 950 °C for fourteen days. Cs3Pr5[PS4]6 crystallizes monoclinically in the space group C2/c (a = 1627.78(7), b = 1315.09(6), c = 2110.45(9) pm, β = 103.276(5)°; Z = 4). Its crystal structure is different from all the other alkali‐metal containing ortho‐thiophosphates of the lanthanides, since it is not possible to formulate a layer containing the praseodymium centered sulfur polyhedra ([PrS8]13—, d(Pr—S) = 286 — 307 pm) and the isolated [PS4]3— tetrahedra (d(P—S) = 202 — 207 pm, ?(S—P—S) = 104 — 106°). All these tetrahedra are edge‐sharing with the metal polyhedra to build up a framework instead. The coordination sphere of the half occupied (Cs2)+ cations (CN = 10 + 2) can be described as two six‐membered sulfur rings in chair conformation containing a “cesium‐pair” in the middle. In contrast the (Cs1)+ cations are surrounded in the not unusual configuration of tetracapped trigonal prisms (CN = 10, better 10 + 2 as well).  相似文献   

5.
Melting reactions of copper, CuI, selenium, and Bi2Se3 yielded black, shiny needles of Cu4BiSe4I = Cu4BiSe2(Se2)I. The compound decomposes peritectically above 635(5) K and crystallizes in the orthorhombic space group Pnma with a = 960.1(1) pm, b = 413.16(3) pm, and c = 2274.7(2) pm (T = 293(2) K). In the crystal structure, strands ${1}\atop{{\infty}}$ [BiSeSe2/2(Se2)2/2]3– run along [010]. Therein, the bismuth(III) cation is coordinated by five selenium atoms, which form a square pyramid. The copper(I) cations are coordinated tetrahedrally by selenide, diselenide and iodide ions. Edge‐sharing of these tetrahedra results in zigzag chains of copper cations with short distances of 262.7(4) pm. Enhanced dispersion of the 3d bands, the Crystal Orbital Hamilton Populations (COHP), and disynaptic ELI‐D basins indicate weakly attractive d10···d10 interactions between the copper cations. The semiconducting properties and the calculated electronic band structure suggest an electron‐precise compound. In copper‐deficient Cu3.824(8)BiSe4I, the Cu···Cu distances are 5 pm shorter, and Raman spectroscopy indicates the presence of diselenide(1–) radical anions besides the diselenide(2–) groups. As a result, in Cu3.824(8)BiSe4I, selenium coexists in the oxidations states –II, –I, and –0.5.  相似文献   

6.
IntroductionApplicationoftherareearthcompoundshavebeenfoundinmedicineandagriculture.Sotheremayberareearthcompoundsinpeptideandproteincomplexes.Itisimportanttounderstandmoreclearlythebondingofthelanthanideionsinthecoordinationcompoundswithaminoacids.S…  相似文献   

7.
The neodymium borohydride [Li(thf)4]2[Nd2(μ‐Cl)2(BH4)6(thf)2] was synthesized from neodymium chloride and lithium borohydride. The compound crystallized in the triclinic crystal system, space group (No. 2) with the cell constants a = 14.8613(11), b = 17.8715(13), c = 23.5846(18) Å, α = 100.760(6), β = 90.648(6) and γ = 103.294(6)°. Each neodymium atom is coordinated by three borohydride anions and a THF molecule whereas two neodymium cations are bridged through two chloro ligands. The charge of the [Nd2(μ‐Cl)2(BH4)6(thf)2]2− anion, which represents the first structurally characterized binuclear mixed borohydride chlorido complex, is compensated by two [Li(thf)4]+ cations.  相似文献   

8.
A unique neodymium(III) complex, {[Nd(BTC)(H2O)4] · H2O}n (BTC = 1, 3, 5‐benzenetricarboxylate), was obtained from the reaction between Nd(ClO4)3 · xH2O and Na3BTC. Coordination bonds, hydrogen bonds, and π‐π stacking form a supramolecular structure with a novel, two‐dimensional framework. The temperature‐dependent magnetic susceptibilities were analyzed by the Curie‐Weiss law; the following values were found C = 1.32, θ = —18.3 K, respectively.  相似文献   

9.
Rossmanith[1]报导,无水NdCl3和萘锂在THF溶液中可生成NdCl2·2THF。我们在研究这一类型化合物时考察了NdCl3·2THF和CpNa(Cp为环戊二烯)在THF中的反应,分离出一种氢化物——[Na·6THF][Cp3Nd(μ-H)NdCp3]·2THF。  相似文献   

10.
The new thiophosphates Rb3Sm[PS4]2 and Cs3Sm[PS4]2 were obtained as pale yellow needles using an in‐situ formed thiophosphate flux. Rb3Sm[PS4]2 crystallizes in the space group P21 with a = 9.7061(19) Å, b = 6.7517(14) Å, c = 11.395(2) Å, β = 90.63(3)°, (Z = 2); Cs3Sm[PS4]2 in space group P21/n with a = 15.311(3) Å, b = 6.8762(14) Å, c = 15.352(3) Å, β = 99.49(3)°, (Z = 4). The crystal structures are characterized by the formation of complex anionic chains, which run along the [010] direction in both structures. One of the two independent thiophosphate groups connects three Sm3+ cations to form an infinite zigzag like arrangement, while the other acts as a terminal ligand to one Sm3+ions. Such a μ3 or face‐grafting coordination mode of a [PS4]3− anion is not very common. The Sm3+ ions are in bicapped trigonal prismatic chalcogen coordination. The average Sm–S distances within the trigonal prisms are close to 2.88Å, while the bonds to the capping atoms are distinctly longer. The chains are chiral yet their symmetry is close to 21/m. In contrast to the rubidium compound, Cs3Sm[PS4]2 contains both enantiomorphs. In both structures the chains are arranged as a distorted hexagonal rod packing.  相似文献   

11.
The new hexathiodiphosphate(IV) hydrates K4[P2S6] · 4 H2O ( 1 ), Rb4[P2S6] · 6 H2O ( 2 ), and Cs4[P2S6] · 6 H2O ( 3 ) were synthesized by soft chemistry reactions from aqueous solutions of Na4[P2S6] · 6 H2O and the corresponding heavy alkali‐metal hydroxides. Their crystal structures were determined by single crystal X‐ray diffraction. K4[P2S6] · 4 H2O ( 1 ) crystallizes in the monoclinic space group P 21/n with a = 803.7(1), b = 1129.2(1), c = 896.6(1) pm, β = 94.09(1)°, Z = 2. Rb4[P2S6] · 6 H2O ( 2 ) crystallizes in the monoclinic space group P 21/c with a = 909.4(2), b = 1276.6(2), c = 914.9(2) pm, β = 114.34(2)°, Z = 2. Cs4[P2S6] · 6 H2O ( 3 ) crystallizes in the triclinic space group with a = 742.9(2), b = 929.8(2), c = 936.8(2) pm, α = 95.65(2), β = 112.87(2), γ = 112.77(2)°, Z = 1. The structures are built up by discrete [P2S6]4? anions in staggered conformation, the corresponding alkali‐metal cations and water molecules. O ··· S and O ··· O hydrogen bonds between the [P2S6]4? anions and the water molecules consolidate the structures into a three‐dimensional network. The different water‐content compositions result by the corresponding alkali‐metal coordination polyhedra and by the prefered number of water molecules in their coordination sphere, respectively. The FT‐Raman and FT‐IR/FIR spectra of the title compounds have been recorded and interpreted, especially with respect to the [P2S6]4? group. The thermogravimetric analysis showed that K4[P2S6] · 4 H2O converted to K4[P2S6] as it was heated at 100 °C.  相似文献   

12.
13.
Nd3NCl6 and Nd4NS3Cl3: Two Derivatives of Neodymium Nitride with Discrete Units of Edge‐Shared ([N2Nd6]12+) and Isolated [NNd4]9+ Tetrahedra, respectively For the preparation of Nd3NCl6 (orthorhombic, Pbca; a = 1049.71(8), b = 1106.83(8), c = 1621.1(1) pm; Z = 8) and Nd4NS3Cl3 (hexagonal, P63mc; a = 922.78(6), c = 683.06(4) pm; Z = 2) elemental neodymium is reacted with sodium azide (NaN3), neodymium trichloride (NdCl3) and in the case of Nd4NS3Cl3 additionally with sulfur in evacuated silica tubes at 750 °C (Nd3NCl6) and 850 °C (Nd4NS3Cl3), respectively. Thereby the hydrolysis‐sensitive nitride chloride forms coarse, brick‐shaped single crystals, while those of the insensitive nitride sulfide chloride emerge hexagonally and pillar‐shaped. The pale violet compounds each exhibit [NNd4] tetrahedra as characteristic structural features, which are connected via a common edge to form discrete pairs of tetrahedra ([N2Nd6]12+) in Nd3NCl6 and are present in Nd4NS3Cl3 even as isolated [NNd4]9+ units. Their three‐dimensional cross‐linkage as well as the charge‐balance regulation proceed solely through Cl anions in the nitride chloride, but through equimolar amounts of S2– and Cl anions in the nitride sulfide chloride. The crystal structure of Nd3NCl6 shows three crystallographically independent Nd3+ cations, each of which is eightfold coordinated by anions (Nd1: 2 N3– + 6 Cl; Nd2 and Nd3: 1 N3– + 7 Cl). Only two different kinds of Nd3+ underlie the structure of Nd4NS3Cl3: Nd1 is surrounded by one N3–, six S2– and three Cl with CN = 10, whereas one N3–, four S2– and three Cl only are coordinating Nd2 with CN = 8.  相似文献   

14.
A new phase has been prepared by methanolothermal reaction of Cs2CO3, BiCl3 and Li3AsSe3 at 130 °C for 36 hours. Cs4BiAs3Se7 ( I ) reveals the first Bi‐selenoarsenate polyanionic chain [Bi(As2Se4)(AsSe3)]4–, consisting of Bi3+ ions in a distorted octahedral environment of [AsSe3]3– and trans‐[As2Se4]4– units. The latter anion consists of a central “As24+” dumb‐bell whereby two Se atoms are attached to each of the As atoms. Structural Data: Space Group P21/n, a = 13.404(4) Å, b = 23.745(8) Å, c = 13.880(4) Å, β = 99.324(6)°, Z = 8.  相似文献   

15.
A new chemical and structural interpretation of K5Ce2(SO4)6·H2O ( I ) and a redetermination of the structure of K2Ce(SO4)3·H2O ( II ) is presented. The mixed‐valent compound I crystallizes in the space group C2/c with a = 17.7321(3), b = 7.0599(1), c = 19.4628(4) Å, β = 112.373(1)° and Z = 4. Compound I has been discussed earlier with space group Cc. In the structure of I , there are pairs of edge sharing cerium polyhedra connected by sulfate oxygen atoms in the μ3 bonding mode. These cerium dimers are linked through edge and corner sharing sulfate bridges, forming layers. The layers are joined by potassium ions which together with the water molecules are placed between the layers. No irregularity in the distribution of the CeIII and CeIV to cause the lost of a crystallographic center of symmetry was detected. We suggest that the charge exerted by the extra f1 electron for every cerium dimer is delocalized over the Ce1–O2–Ce2 moiety in a non‐bonding mode. As a result, the oxidations state of each cerium ion is a mean value between III and IV at each atomic position. Compound II crystallizes in the space group C2 with a = 20.6149(2), b = 7.0742(1), c = 17.8570(1) Å, β = 122.720(1)° and Z = 8. The hydrogen atoms have been located and the absolute structure has been established. Neither hydrogen atom positions nor anisotropic displacement parameters were given in the previous reports. In compound II , the cerium polyhedra are connected by edge and corner sharing sulfate groups forming a three‐dimensional network. This network contains Z‐shaped channels hosting the charge compensating potassium ions.  相似文献   

16.
The reaction of octamethylenetetrathiafulvalene (OMTTF) with excess CuBr2 in tetrahydrofurane/acetonitrile yields black (OMTTF)2[Cu4Br10] ( 1 ). The crystal structure determination shows the presence of OMTTF cations and tetranuclear bromidocuprate anions. The novel anion consists of four edge and corner sharing CuBr4 tetrahedra, which are connected to a ring. The assignment of the ionic charges and oxidation states for the copper atoms is supported by the magnetic properties. 1 is antiferromagnetic with TN ≈ 30 K. The magnetic moment reaches 2.54 B.M., which indicates, together with the Curie–Weiss constant of –35 K, a coupling of the paramagnetic spins over the whole temperature region. The ionic charges of the salt‐like compound 1 are therefore (OMTTF2+)2[(Cu+)2(Cu2+)2Br10]4–. The antiferromagnetism is explained by the coupling of the spins of two Cu2+ ions in the anion with an exchange constant of J = –18 cm–1. The CuI and CuII atoms are clearly distinguishable in the mixed valent anion. The OMTTF cation is not planar but exhibits an interplanar angle between the two central C3S2 ring moieties of 15.3°, which is in accordance to the dicationic oxidation state.  相似文献   

17.
Single crystals of a third modification of Ag2Te2O6 (denoted as Ag2Te2O6–III) and of Ag4TeO5 have been obtained as minor by‐products during hydrothermal phase formation experiments in the system Ag‐Hg‐Te‐O. The crystal structure of Ag2Te2O6–III (P21/c, Z = 4, a = 6.4255(10), b = 6.9852(11), c = 13.204(2) Å, β = 90.090(3)°, 1885 independent reflections, R[F2 > 2σ(F2)] = 0.0334, wR2(F2 all) = 0.0817) comprises tellurium in oxidation states +IV and +VI and is topologically related to the structure of the Ag2Te2O6–I modification, which consists of similar layers and interjacent layers of Ag+ cations. Ag4TeO5 (C2/c, Z = 8, a = 16.271(2), b = 6.0874(10), c = 11.4373(16) Å, β = 106.730(10)°, 2372 independent reflections, R[F2 > 2σ(F2)] = 0.0288, wR2(F2 all) = 0.0737) is made up of a layer‐like arrangement of isolated [TeVI2O10] double octahedra and of Ag+ cations situated both in layers parallel and inside the layers of the anionic moieties.  相似文献   

18.
Colourless block‐shaped crystals of [(NH4)2(2.2.2‐cryptand)2][P2S8] ( 1 ) and [(NH4)2(18‐crown‐6)2][P2S8]·H2O ( 2 ) could be obtained by the reaction of an aqueous solution of ammonium hexathiohypodiphosphate, (NH4)4P2S6·2 H2O, with sulfur and 2.2.2‐cryptand or 18‐crown‐6. The crystal structures of both compounds have been determined by single‐crystal X‐Ray diffraction analysis. Compound 1 crystallizes in the monoclinic space group C2/c with a = 2032.7(2), b = 1243.6(2), c = 2244.6(2) pm, β = 98.64(1)°, and Z = 8, whereas compound 2 crystallizes also monoclinic in the space group P21/c with a = 2121.3(2), b = 865.5(1), c = 2345.4(2) pm, β = 91.96(1)°, and Z = 4. It could be established that the title compounds contain a new type of six‐membered [1,2‐P2S4] ring with P – P bond and three S – S linkages. The tetrahedral environment of each phosphorus is completed by a (formally) single and double bonded sulfur atom attached externally to the [1,2‐P2S4] ring. These terminal PS2 units are mesomerically stabilized according to their P – S distances. FT‐IR and FT‐Raman spectra of the title compounds are recorded and interpreted.  相似文献   

19.
M3S2Cl5 (M = Nd, Dy): Two Types of Neodymium and Dysprosium Sulfide Chlorides with Double Chains 1{[S2M3]5+} of Edge‐Sharing [SM4] Tetrahedra Nd3S2Cl5 (monoclinic, P21/c; a = 2176.9(2), b = 654.62(6), c = 703.91(7) pm, β = 97.879(8)°; Z = 4) and Dy3S2Cl5 (orthorhombic, Pnma; a = 682.34(7), b = 2153.2(2), c = 638.21(6) pm; Z = 4) are formed by reacting neodymium or dysprosium metal with sulfur and the respective trichloride (MCl3) in suitable molar ratios (M : S : MCl3 = 4 : 6 : 5) within ten days in evacuated silica tubes at 850 °C. The crystal structure of Dy3S2Cl5 (P 21/n 21/m 21/a) can be transferred to that of Nd3S2Cl5 (P 1 1 21/a ≡ P 1 21/c 1) through a lattice‐equivalent transition of the index 2 (t2) by the loss of two screw axes, one diagonal glide plane, and one simple mirror plane. The moisture sensitive, transparent, pale violet (Nd3S2Cl5) or faint yellow (Dy3S2Cl5) sulfide chlorides both exhibit infinite double strands {[S2M3]5+} (M = Nd, Dy) as main structural feature, which can be built of two condensed anti‐SiS2‐analogous chains of trans‐edge sharing [SM4] tetrahedra. These are running parallel [001] in Nd3S2Cl5 or [100] in Dy3S2Cl5 and arrange as a hexagonal closest packing of rods. The coordination polyhedra about the M3+ cations can be described as bicapped trigonal prisms (CN = 8) in both crystal structures, where by the collapse of two symmetrically equivalent particles the total number of three in the case of Nd3S2Cl5 is reduced to two crystallographically different ones in Dy3S2Cl5. Correspondingly, only three independent Cl anions are present in the crystal structure of Dy3S2Cl5 for charge compensation and three‐dimensional cross‐linkage of the {[S2M3]5+} strands as compared to five in Nd3S2Cl5. The analogue holds for the S2–anions: The two distinct ones in the monoclinic Nd3S2Cl5 structure unite to a single one in orthorhombic Dy3S2Cl5.  相似文献   

20.
The Mixed‐Valent Oxoferrate(II,III) K3[Fe2O4] – A Stuffed Variant of the K2[Fe2O4] Type of Structure K3[Fe2O4] has been obtained by tempering “Cs3K3CdO4” in sealed Fe containers (36 d at 450–480 °C) as dark red transparent single crystals of rectangular shape. The structure determination (IPDS diffractometer data, MoKα, 1891 collected reflections, 234 symmetry independent, R1 = 0.033, wR2 = 0.088) confirms the space group Fddd; a = 596.11(9), b = 1140.3(1), c = 1717.9(3) pm; Z = 8. K3[Fe2O4] exhibits a structure with [FeO4] tetrahedra connected via corners leading to a three‐dimensional network closely related to the KFeO2 type of structure. From the oxidation at 520 °C of iron metal with KO2 in the presence of Na2O black single crystal of K2[Fe2O4] have been obtained. K2[Fe2O4] crystallizes in the space group Pbca with Z = 8 and a = 559.18(7), b = 1122.1(1), c = 1592.8(2) pm (IPDS diffractometer data, MoKα, collected refelctions: 9543, 1213 symmetry independent, R1 = 0.043, wR2 = 0.102).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号