首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Coordination Chemistry of P-rich Phosphanes and Silylphosphanes. XVI [1] Reactions of [g2-{P–PtBu2}Pt(PPh3)2] and [g2-{P–PtBu2}Pt(dppe)] with Metal Carbonyls. Formation of [g2-{(CO)5M · PPtBu2}Pt(PPh3)2] (M = Cr, W) and [g2-{(CO)5Cr · PPtBu2}Pt(dppe)] [η2-{P–PtBu2}Pt(PPh3)2] 4 reacts with M(CO)5 · THF (M = Cr, W) by adding the M(CO)5 group to the phosphinophosphinidene ligand yielding [η2-{(CO)5Cr · PPtBu2}Pt(PPh3)2] 1 , or [η2-{(CO)5W · PPtBu2}Pt(PPh3)2] 2 , respectively. Similarly, [η2-{P–PtBu2}Pt(dppe)] 5 yields [η2-{(CO)5Cr · PPtBu2}Pt(dppe)] 3 . Compounds 1 , 2 and 3 are characterized by their 1H- and 31P-NMR spectra, for 2 and 3 also crystal structure determinations were performed. 2 crystallizes in the monoclinic space group P21/n (no. 14) with a = 1422.7(1) pm, b = 1509.3(1) pm, c = 2262.4(2) pm, β = 103.669(9)°. 3 crystallizes in the triclinic space group P1 (no. 2) with a = 1064.55(9) pm, b = 1149.9(1) pm, c = 1693.2(1) pm, α = 88.020(8)°, β = 72.524(7)°, γ = 85.850(8)°.  相似文献   

2.
Oxidation of zero‐valent phosphine complexes [M(PtBu3)2] (M=Pd, Pt) has been investigated in 1,2‐difluorobenzene solution using cyclic voltammetry and subsequently using the ferrocenium cation as a chemical redox agent. In the case of palladium, a mononuclear paramagnetic PdI derivative was readily isolated from solution and fully characterized (EPR, X‐ray crystallography). While in situ electrochemical measurements are consistent with initial one‐electron oxidation, the heavier congener undergoes C−H bond cyclometalation and ultimately affords the 14 valence‐electron PtII complex [Pt(κ2PC‐PtBu2CMe2CH2)(PtBu3)]+ with concomitant formation of [Pt(PtBu3)2H]+.  相似文献   

3.
Reactions of freshly precipitated binuclear zinc dimethyldithiocarbamate with [AuCl4]? anions in 2 M HCl were studied. The heteropolynuclear complex [Au2{S2CN(CH3)2}4][ZnCl4] (I) and the polymeric heterovalent complex ([Au{S2CN(CH3)2}2][AuCl2]) n (II) were preparatively isolated from the chemisorption system [Zn2{S2CN(CH3)2}4]-Au3+/2 M HCl. The products were characterized by 13C MAS NMR data and by X-ray diffraction determination of crystal and molecular structures. The principal structural units of compounds I and II are the tetragonal planar complex cations [Au{S2CN(CH3)2}2]+ (in which the complex-forming ion coordinates two MDtc ligands in the S,S′-bidentate mode) and the anions, namely, the distorted tetrahedral anion [ZnCl4]2? in I and the linear [AuCl2]? anion in II. The further structural self-organization of complexes at the supramoleular level occurs through relatively weak secondary bonds Au?S and Au?Cl. The chemisorption capacities of zinc dimethyldithiocarbamate calculated from gold(III)-binding reactions are 644.1 and 1288.2 mg of gold per gram of the sorbent. Simultaneous thermal analysis studies of the thermal behavior of I and II were used to elucidate the conditions of gold recovery.  相似文献   

4.
Structurally Chemical Investigation of Monoammin Copper (I) Complexes : [CuNH3]2[Pt(CN)6], [CuNH3]2[Pt(CN)4] and Cu3[Co(CN)6] · 2NH3 The preparation and the properties of [CuNH3]2[Pt(CN)6], [CuNH3]2[Pt(CN)4] and Cu3[Co(CN)6] · 2NH3 are described. I.R. and Raman spectra have been recorded and assigned. According to X-ray powder diagrams, [CuNH3]2[Pt(CN)6] crystallizes in the trigonal space group D–P3 ml, a = 7.771, c = 5.988 Å, Z = 1. According to the spectroscopic and crystallographic data, it is concluded that the CuI ion is coordinated with one NH3 group and with the N atoms of the cyanometallate anions. The coordination number of the Cu+ is 4 in [CuNH3]2[Pt(CN)6] and 3 in [CuNH3]2[Pt(CN)4]. In the Cu3[Co(CN)6] · 2 NH3 complex two Cu atoms have the coordination number 2, the third Cu atom 4.  相似文献   

5.
The phosphorus‐sulfur ligand 1‐(methylthio)‐3‐(diphenylphosphino)‐propane (S‐P3) has been synthesized and characterized by 1H NMR and 13C NMR. Reactions of S‐P3 with [PdCl2(PhCN)2] afforded the complexes [PdCl2(S‐P3)] ( I ) and [PdCl2(S‐P3)2] ( II ), in which S‐P3 acts as a bidentate and monodentate ligand, respectively. Compound I crystallizes in monoclinic space group P21/n (No. 14) with cell dimensions: a = 8.589(3), b = 15.051(3), c = 17.100(3)Å, β = 102.91(2)°, V = 2154.7(9)Å3, Z = 4. Likewise, compound II crystallizes in monoclinic space group P21/n (No. 14) with a = 9.993(5), b = 8.613(4), c = 18.721(5)Å, β = 90.18(3)°, V = 1611.3(12)Å3, Z = 2. Compound II has a trans square planar configuration with only the P‐site of the ligand bonded to the palladium atom.  相似文献   

6.
Transition metal complexes of ditertiary aminomethylphosphine ligand, (Ph2PCH2)NCH3 [N,N‐bis(diphenylphospinomethyl)aminomethane], dppam, with metal ions which are Ag(I), Au(I), Cu(I), and Co(II) have been synthesized under nitrogen atmosphere by the Schlenk method. [Ag(dppam)2]NO3 ( 1 ), [Au(dppam)2]Cl ( 2 ), and [Cu(dppam)2]Cl ( 3 ) complexes have been isolated as colorless solids, whereas [CoCl2(dppam)] ( 4 ) complex as a blue solid. All complexes have been characterized by atomic absorption, FT‐IR, NMR (1H, 13C, 31P) spectroscopic, thermogravimetric/differantial thermal analysis (TG/DTA), and elemental analysis techniques. Antimicrobial activity of 1 , 2 , 3 , and 4 were studied in vitro on 13 bacteria and 4 yeasts. The cobalt(II) phosphine complex has shown the best antimicrobial activity in comparison with the other metal complexes. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:484–491, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20145  相似文献   

7.
Studies on Polyhalides. III. Crystal Structures of [Cu(NH3)4I2 · I2] and [Cu(NH3)4I3]I3 Tetramminecopper(II)tetraiodide [Cu(NH3)4I2 · I2] (I) crystallizes monoclinically in the space group C2/m with a = 1 185.9 pm, b = 892.8 pm, c = 656.8 pm, β = 111.10° and Z = 2 formula units. Tetramminecopper(II)hexaiodide [Cu(NH3)4I3]I3 (II) crystallizes orthorhombically in the space group Pnnm with a = 874.9 pm, b = 1 089.8 pm, c = 885.3 pm, and Z = 2 formula units. A special feature of these structures are coordinated polyiodide ions I42? (I) or I3? (II). In both compounds four coplanar nitrogen atoms and two axial iodine atoms form a quasi-octahedral coordination around copper with the usual (4+2)-tetragonal distortion. The copper ions are connected by linear, centrosymmetric polyiodide ions I42? (I) or I3? (II). Therefore infinite planar zigzag chains of units [Cu(NH3)4I4] (I) or [Cu(NH3)4I3]+(II) are resulting. The counterion I3? (II) is intercalated between these chains.  相似文献   

8.
Syntheses and Characterizations of the First Tris and Tetrakis(trifluoromethyl) Palladates(II) and Platinates(II), [M(CF3)3(PPh3)] and [M(CF3)4]2— (M = Pd, Pt) Tris(trifluoromethyl)(triphenylphosphino)palladate(II) and platinate(II), [M(CF3)3PPh3], and the tetrakis(trifluoromethyl)metallates, [M(CF3)4]2— (M = Pd, Pt), are prepared from the reactions of [MCl2(PPh3)2] and Me3SiCF3 / [Me4N]F or [I(CF3)2] salts in good yields. [Me4N][M(CF3)3(PPh3)] crystallize isotypically in the orthorhombic space group Pnma (no. 62) with Z = 4. The NMR spectra of the new compounds are described.  相似文献   

9.
Oxidation of zero‐valent phosphine complexes [M(PtBu3)2] (M=Pd, Pt) has been investigated in 1,2‐difluorobenzene solution using cyclic voltammetry and subsequently using the ferrocenium cation as a chemical redox agent. In the case of palladium, a mononuclear paramagnetic PdI derivative was readily isolated from solution and fully characterized (EPR, X‐ray crystallography). While in situ electrochemical measurements are consistent with initial one‐electron oxidation, the heavier congener undergoes C?H bond cyclometalation and ultimately affords the 14 valence‐electron PtII complex [Pt(κ2PC‐PtBu2CMe2CH2)(PtBu3)]+ with concomitant formation of [Pt(PtBu3)2H]+.  相似文献   

10.
The tripodal ligands NP(3)(tris[2-(diphenylphosphino)ethyl]amine) and PP(3)(tris[2-(diphenylphosphino)ethyl]phosphine), form five-coordinate [Pd(NP(3))X]X [X = Cl (1), Br (2)], [M(PP(3))X]X [M = Pd: X = Cl (4), Br (5), I (6); M = Pt, X = Cl (7), Br (8), I (9)] and four-coordinate[Pd(NP(3))I]I (3) complexes containing three fused rings around the metal. The interaction between Au(tdg)X (tdg = thiodiglycol; X = Cl, Br) or AuI and the respective ionic halo complexes 1-9 in a 1:1 stoichiometric ratio occurs via a ring-opening reaction with formation of the heterobimetallic systems PdAu(NP(3))X(3)[X = Cl (11), Br (12), I (13)], [MAu(PP(3))X(2)]X [M = Pd: X = Cl (14), Br (15), I (16); M = Pt: X = Cl (17), Br (18), I (19)]. The cations of complexes 17 and 18 were shown, by X-ray diffraction, to contain a distorted square-planar Pt(II) arrangement (Pt(P(2)P)X) where PP(3) is acting as tridentate chelating ligand and an almost linear PAuX moiety bearing the dangling phosphorus formed in the ring-opening process. PPh(3) coordinates to Au(I) and not to M(II) when added in excess to 14 and 17. Complexes 14-17 and [Pt(P(4))](BPh(4))(2) (10) (P4=linear tetraphosphine) also react with A(I), via chelate ring-openings to give MAu(2)(PP(3))X(4) [M = Pd: X = Cl (20), Br (21), I (22); M = Pt: X = Cl (23)] and [Pt(2)Au(2)(mu-Cl)(2)(mu-P(4))(2)](BPh(4))(4) (24), respectively.  相似文献   

11.
Synthesis and Structure Investigations of Iodocuprates(I). XV Iodocuprate(I) with Solvated Cations: [Li(CH3CN)4] [Cu2I3] and [Mg{(CH3)2CO}6][Cu2I4] [Li(CH3CN)4][Cu2I3] 1 and [Mg((CH3)2CO)6][Cu2I4] 2 were prepared by reactions of CuI with LiI in acetonitrile and of CuI with MgI2 in acetone. 1 crystallizes orthorhombic, Pnma, a = 552.7(2), b = 1258.8(8), c = 2516(1) pm, z = 4. [Li(CH3CN)4]+ cations are located between rod packings of CuI4 tetrahedra double chains [(CuI2/2I2/4)2]? parallel to the axis. Short intermolecular anion/cation contacts were observed. The crystal structure of 2 (monoclinic, P21/n, a = 1840(2), b = 1059.2(2), c = 1879(2)pm, β = 112.94(4)°, z = 4) is built up by [Mg((CH3)2CO)6]2+ cations forming a simple hexagonal sphere packing. The binuclear anions [Cu2I4]2? occupy holes in the trigonal prismatic channels formed by the cations.  相似文献   

12.
Preparation of trans-[Pt(N3)4X2]2? (X ? Br, I, SCN, SeCN) by Oxidative Addition to [Pt(N3)4]2? in Organic Solvents By oxidative addition to (TBA)2[Pt(N3)4], dissolved in dichlormethane, trans-(TBA)2[Pt(N3)4X2], X ? Br, I, SCN, SeCN; TBA = Tetrabutylammonium, are formed. The vibrational spectra of these salts are assigned according to point group D4h. From the resonance Raman spectrum of trans-(TBA)2[Pt(N3)4I2] the harmonic vibrational frequency ω1 of v(Pt? I), A1g, is calculated to be 138.50 cm?1 and the inharmonicity constant x11 = 0.27 cm?1. The characteristical feature in the UV/VIS spectra is caused by intensive π(N,X) → a1g, b1g(Pt) CT transitions.  相似文献   

13.
The betain like carbodiphosphorane CO2 adduct O2CC(PPh3)2 ( 1a ) can serve as a ligand versus hard Lewis acids from main group compounds. Thus, reaction of 1a with InCl3, InI3 and SnCl2 in polar solvents leads to the addition compounds [Cl3In{O2CC(PPh3)2}] ( 2 ), [Cl2SnO2CC(PPh3)2}] ( 3 ) and the salt like compound [I2In{O2CC(PPh3)2}2]I ( 4 ) in good yields. Whereas in the indium compounds 1a acts as a chelating ligand, in the tin compound the molecule coordinates with one oxygen atom only as a monodentate ligand. 4 has a pyramidal structure with a stereochemical active pair of electrons. All compounds could be characterized by X‐ray analyses and the usual spectroscopic methods.  相似文献   

14.
By reaction of GeI4, [N(nBu)4]I as iodide donor, and [NMe(nBu)3][N(Tf)2] as ionic liquid, reddish‐black, plate‐like shaped crystals are obtained. X‐ray diffraction analysis of single crystals resulted in the compositions ;alpha;‐[NMe(nBu)3](GeI4)I (Pbca; a = 1495.4(3) pm; b = 1940.6(4) pm; c = 3643.2(7) pm; Z = 16) and β‐[NMe(nBu)3](GeI4)I (Pn; a = 1141.5(2) pm; b = 953.6(2) pm; c = 1208.9(2) pm; β = 100.8(1)°; Z = 2). Depending on the reaction temperature, the one or other compound is formed selectively. In addition, the reaction of GeI4 and [N(nBu)4]I, using [ImMe(nBu)][BF4] (Im = imidazole) as ionic liquid, resulted in the crystallization of [ImMe(nBu)][N(nBu)4](GeI4)3I2 (P21/c; a = 1641.2(3) pm; b = 1903.0(4) pm; c = 1867.7(4) pm; β = 92.0(1)°; Z = 4). The anionic network of all three compounds is established by molecular germanium(IV)iodide, which is bridged by iodide anions. The different connectivity of (GeI4–I) networks is attributed to the flexibility of I regarding its coordination and bond length. Here, a [3+1]‐, 4‐ and 5‐fold coordination is first observed in the pseudo‐ternary system M/Ge/I (M: cation).  相似文献   

15.
The first crystallographically characterizable complex of Sc2+, [Sc(NR2)3] (R=SiMe3), has been obtained by LnA3/M reactions (Ln=rare earth metal; A=anionic ligand; M=alkali metal) involving reduction of Sc(NR2)3 with K in the presence of 2.2.2‐cryptand (crypt) and 18‐crown‐6 (18‐c‐6) and with Cs in the presence of crypt. Dark maroon [K(crypt)]+, [K(18‐c‐6)]+, and [Cs(crypt)]+ salts of the [Sc(NR2)3] anion are formed, respectively. The formation of this oxidation state of Sc is also indicated by the eight‐line EPR spectra arising from the I =7/2 45Sc nucleus. The Sc(NR2)3 reduction differs from Ln(NR2)3 reactions (Ln=Y and lanthanides) in that it occurs under N2 without formation of isolable reduced dinitrogen species. [K(18‐c‐6)][Sc(NR2)3] reacts with CO2 to produce an oxalate complex, {K2(18‐c‐6)3}{[(R2N)3Sc]2(μ‐C2O4κ 1O:κ 1O′′)}, and a CO2 radical anion complex, [(R2N)3Sc(μ‐OCO‐κ 1O:κ 1O′)K(18‐c‐6)]n .  相似文献   

16.
The first crystallographically characterizable complex of Sc2+, [Sc(NR2)3] (R=SiMe3), has been obtained by LnA3/M reactions (Ln=rare earth metal; A=anionic ligand; M=alkali metal) involving reduction of Sc(NR2)3 with K in the presence of 2.2.2‐cryptand (crypt) and 18‐crown‐6 (18‐c‐6) and with Cs in the presence of crypt. Dark maroon [K(crypt)]+, [K(18‐c‐6)]+, and [Cs(crypt)]+ salts of the [Sc(NR2)3] anion are formed, respectively. The formation of this oxidation state of Sc is also indicated by the eight‐line EPR spectra arising from the I =7/2 45Sc nucleus. The Sc(NR2)3 reduction differs from Ln(NR2)3 reactions (Ln=Y and lanthanides) in that it occurs under N2 without formation of isolable reduced dinitrogen species. [K(18‐c‐6)][Sc(NR2)3] reacts with CO2 to produce an oxalate complex, {K2(18‐c‐6)3}{[(R2N)3Sc]2(μ‐C2O4κ 1O:κ 1O′′)}, and a CO2 radical anion complex, [(R2N)3Sc(μ‐OCO‐κ 1O:κ 1O′)K(18‐c‐6)]n .  相似文献   

17.
Syntheses and NMR Spectroscopic Ivestigations of Salts containing the Novel Anions [PtXn(CF3)6‐n]2— (n = 0 ‐ 5, X = F, OH, Cl, CN) and Crystal Structure of K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O The first syntheses of trifluoromethyl‐complexes of platinum through fluorination of cyanoplatinates are reported. The fluorination of tetracyanoplatinates(II), K2[Pt(CN)4], and hexacyanoplatinates(IV), K2[Pt(CN)6], with ClF in anhydrous HF leads after working up of the products to K2[(CF3)2F2Pt(μ‐OH)2PtF2(CF3)2]·2H2O. The structure of the salt is determined by a X‐ray structure analysis, P21/c (Nr. 14), a = 11.391(2), b = 11.565(2), c = 13.391(3)Å, β = 90.32(3)°, Z = 4, R1 = 0.0326 (I > 2σ(I)). The reaction of [Bu4N]2[Pt(CN)4] with ClF in CH2Cl2 generates mainly cis‐[Bu4N]2[PtCl2(CF3)4] and fac‐[Bu4N]2[PtCl3(CF3)3], but in contrast that of [Bu4N]2[Pt(CN)6] with ClF in CH2Cl2 results cis‐[Bu4N]2[PtX2(CF3)4], [Bu4N]2[PtX(CF3)5] (X = F, Cl) and [Bu4N]2[Pt(CF3)6]. In the products [Bu4N]2[PtXn(CF3)6‐n] (X = F, Cl, n = 0—3) it is possibel to exchange the fluoro‐ligands into chloro‐ and cyano‐ligands by treatment with (CH3)3SiCl und (CH3)3SiCN at 50 °C. With continuing warming the trifluoromethyl‐ligands are exchanged by chloro‐ and cyano‐ligands, while as intermediates CF2Cl and CF2CN ligands are formed. The identity of the new trifluoromethyl‐platinates is proved by 195Pt‐ and 19F‐NMR‐spectroscopy.  相似文献   

18.
Addition of Cationic Lewis Acids [M′Ln]+ (M′Ln = Fe(CO)2Cp, Fe(CO)(PPh3)Cp, Ru(PPh3)2Cp, Re(CO)5, Pt(PPh3)2, W(CO)3Cp to the Anionic Thiocarbonyl Complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W; pz = 3,5‐dimethylpyrazol‐1‐yl) Adducts from Organometallic Lewis Acids [Fe(CO)2Cp]+, [Fe(CO)(PPh3)Cp]+, [Ru(PPh3)2Cp]+, [Re(CO)5]+, [ Pt(PPh3)2]+, [W(CO)3Cp]+ and the anionic thiocarbonyl complexes [HB(pz)3(OC)2M(CS)] (M = Mo, W) have been prepared. Their spectroscopic data indicate that the addition of the cations occurs at the sulphur atom to give end‐to‐end thiocarbonyl bridged complexes [HB(pz)3(OC)2MCSM′Ln].  相似文献   

19.
The complexes [Cu2Br4]2?, [Cu2I4]2?, [Cu2I2Br2]2?, [Cu2I3Cl]2?, [Ag2Cl4]2? have been characterized as their isomorphous bis(triphenylphosphoranylidene)ammonium ([Ph3PNPPh3]+ = PNP+) salts by single crystal structural determinations. All anions show the centrosymmetric doubly halogen‐bridged forms [XM(μ‐X)2MX]2? with three‐coordinate metal atoms that have been observed in [M2X4]2? complexes with other large organic cations. In [Cu2I2Br2]2? the iodide ligands occupy the bridging positions and the bromide the terminal positions, while in [Cu2I3Cl]2?, obtained in an attempt to prepare [Cu2I2Cl2]2?, two of the iodide ligands occupy the bridging positions with the third iodide and the chloride ligand occupying two statistically disordered terminal positions. In [Ag2Cl4]2? the distortion from ideal trigonal coordination of the metal atom is greater than in the copper complexes, but less than in other previously reported [Ag2Cl4]2? complexes with organic cations. The ν(MX) bands have been assigned in the far‐IR spectra, and confirm previous observations regarding the unexpectedly simple IR spectra of [Cu2X4]2? complexes.  相似文献   

20.
The reaction of [Pt(PEt3)3] with CH2I2 affords trans-[Pt(CH2PEt3)I(PEt3)2]I and is believed to proceed via the α-functionalised alkyl cis-[Pt(CH2I)I(PEt3)2], because similar ylides are obtained from cis- or trans-[PT(CH2X)(PPh3)2X] (XCl, Br, or I) with PR3 (PEt3, PBu3n, PMePh2, PEtPh2, or PPh3); cis-[Pd(CH2I)-I(PPh3)2] does not react with excess PPh3, but with PEt3 yields trans-[Pd(CH2PEt3)I(PPh3)2]I; the X-ray structure of trans-[Pt(CH2PEt3)I(PEt3)2]I (current R = 0.045) shows PtP(1) 2.332(7), PtP(2) 2.341(8), PtC 2.08(2), and PtI 2.666(2) Å, and angles (a) C(1)PtI, P(1), P(2): 176.9(8), 91.6(6), 93.4(6), (b) IPtP(1), P(2): 87.1(2), 88.5(2), and (c) P(1)P(2), 166.8(3), and (d) PtC(1)P(3), 118(1)°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号