首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional polymeric materials accumulate in the environment due to their low biodegradability. However, an increase in the biodegradation rate of these polymers may be obtained with the addition of pro-degrading substances. This study aimed to evaluate abiotic and biotic degradation of polyethylenes (PEs) using plastic bags of high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) formulated with pro-oxidant additives as test materials. These packaging materials were exposed to natural weathering and periodically analyzed with respect to changes in mechanical and structural properties. After a year of exposure, residue samples of the bags were incubated in substrates (compost of urban solid waste, perlite and soil) at 58 °C and at 50% humidity. The biodegradation of the materials was estimated by their mineralization to CO2. The molar mass of the pro-oxidant-activated PE decreased and oxygen incorporation into the chains increased significantly during natural weathering. These samples showed a mineralization level of 12.4% after three months of incubation with compost. Higher extents of mineralization were obtained for saturated humidity than for natural humidity. The growth of fungi of the genera Aspergillus and Penicillium was observed on PE films containing pro-oxidant additives exposed to natural weathering for one year or longer. Conventional PE films exposed to natural weathering showed small biodegradation.  相似文献   

2.
The biodegradation of electrospun nano-fibers of poly(ϵ-caprolactone) was firstly investigated, using pure-cultured soil filamentous fungi. In the biochemical oxygen demand test, the biodegradation of the nano-fiber exceeded 20-30% carbon dioxide generation. The biodegradabilities decrease with increase of the mean fiber diameter.  相似文献   

3.
The kinetics of abiotic oxidation in the dark and the kinetics of biological mineralization in soil and in a compost environment of thermally oxidized LDPE were studied. It was demonstrated that different activation energies are obtained for the thermal oxidation, depending on the composition of the materials. Significantly higher levels of biodegradability have been obtained in a soil environment at 23 °C compared with the compost environment at 58 °C. After two years of mineralization, 91% conversion to carbon dioxide was obtained in the soil test, compared with 43% in the compost test. The differences between fungal, archaeal and bacterial community structures in soil and compost after 607 days of biodegradability assay were mapped out. It was found that the most dominant bacterial and fungal terminal restriction fragments (TRFs) in the compost containing the test material are significantly different from the TRFs in the other environments.  相似文献   

4.
The biodegradabilities of poly(?-caprolactone) (PCL) powders (av. size = 180.7 μm) in controlled compost at 58 °C have been studied using the microbial oxidative degradation analyzer (MODA) based on ISO 14855-2 entitled “Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions - Method by analysis of evolved carbon dioxide - Part 2: Gravimetric measurement of carbon dioxide evolved in a laboratory-scale test”. The biodegradability of the PCL powders was 101.4% in a 56-day test period by the ISO method. The biodegradabilities of PCL powders have been studied using percent modern carbon (pMC) measured by accelerated mass spectrometry (AMS). Trapped CO2 was analyzed by AMS to determine the pMC (sample) using 14C radiocarbon concentration. By using the theory that the pMC (sample) was the sum of pMC (compost) (104.88%) and pMC (PCL) (0%) as the respective ratios in the determined period, CO2 (respiration) was calculated only from one reaction vessel. The biodegradability of PCL powders was 79.9% in a 56-day test period by the AMS method. It was found that respiration activities in the sample vessel including PCL, compost and sea sand were the same as that in the blank vessel including compost and sea sand without PCL during the active biodegradation period (0-33 day) at 58 °C. It was confirmed that respiration activities in the sample vessel were slightly higher than that in the blank vessel after active biodegradation due to the propagation of microorganisms using energy and metabolites by PCL biodegradation during those periods.  相似文献   

5.
The aim of this work was to investigate the aerobic biodegradation of a composite under controlled composting conditions using standard test methods. Composite was formed by poly(lactic acid) (PLA), with and without the addition of maleic anhydride (MA), acting as coupling agent, thermoplastic starch (TPS) and short natural fibre (coir). For comparison its starting materials, such as TPS and matrix (containing 75 wt% of PLA and 25 wt% of TPS), were also tested.At the end of the incubation period, TPS appeared to be the most bio-susceptible material being totally biodegraded and the matrix showed a higher level of biodegradation (higher amounts of evolved CO2) than PLA, probably due to the TPS domains preferentially attacked by microorganisms and increasing the percentage of carbon dioxide produced. Fibres seemed to play a secondary role in the process as confirmed by the slight differences in carbon dioxide produced. The compatibilised composite revealed a lower percentage of evolved CO2 than the uncompatibilised one. Finally, the degradation results were confirmed by thermal properties' changes of tested materials at different incubation times, as monitored by thermal analysis, and by the scanning electron microscopy (SEM) analyses of the compost aged samples. SEM micrographs showed the formation of patterns and cracks on the surface of the materials aged in the compost evidencing a profound loss of structure. Moreover, an extended biofilm (evident also with optical microscopy observation) was detected on the biodegraded materials, thus indicating the growth of a large number of bacteria and fungi on their surfaces.  相似文献   

6.
Understanding the behavior of polymeric materials, particularly their biodegradation, is fundamental for solving problems in the management of environmental residues. In this work, we used a monitoring system based on an aerobic biodegradation technique known as the Sturm test to investigate the biodegradation of poly-β-(hydroxybutyrate), poly-β-(hydroxybutyrate-co-β-valerate) and poly(ε-caprolactone), in compost derived from municipal solid waste. The thermal analysis of these polymers was done using differential scanning calorimeter. The melting temperature and crystallinity were also determined. The results showed that poly-β-(hydroxybutyrate) degraded faster than the other two polymers, probably because the chemical structure of this polymer made attack by microorganisms easier.  相似文献   

7.
Investigation of the biodegradability of water soluble poly(vinyl alcohol) (PVA) based blown films was carried out under different lab-scale environmental conditions. In particular respirometric tests were utilized in order to evaluate the biodegradability of PVA films in composting, in modified Sturm test and in soil burial simulation tests. Several microbial inocula present in river water, mature compost, forest and farm soils as well as sewage sludge from municipal and paper mill wastewater treatments plants were utilized for the relevant tests. A mixed PVA-degrading microbial culture was obtained by a common enrichment procedure by using sewage sludge from paper mill as inoculum; this culture was tentatively utilized for the isolation of single PVA-degrading microorganisms. As a first result we can stress that significant biodegradation extent in fairly low incubation time can be obtained only in the presence of acclimated microbial populations such as those deriving from paper mill sewage sludge, in liquid cultures. Nevertheless separation of single degrading microbial species was impossible most likely due to the establishment of symbiotic or commensal interactions between the single components of the PVA-degrading mixed cultures. On the other hand, limited mineralization rates were recorded in solid cultures in the presence of soil or compost. Finally, a mechanism of degradation of polymer chains unlike random or unzipping was suggested in the presence of either PVA-degrading mixed culture and its filtrate by means of viscometric determinations of molecular weight within the time.  相似文献   

8.
Biodegradation studies were conducted for major organic solvents such as methanol, ethanol, isopropanol, acetone, acetonitrile, toluene, chloroform, and carbon tetrachloride commonly used in pharmaceutical industries. Various microbial isolates were enriched and screened for their biodegradation potential. An aerobic mixed culture that had been previously enriched for biodegradation of mixed pesticides was found to be the most effective. All the organic solvents except chloroform and carbon tetrachloride were consumed as primary substrates by this mixed culture. Biodegradation rates of methanol, ethanol, isopropanol, acetone, acetonitrile, and toluene were measured individually in batch systems. Haldane model was found to best fit the kinetics of biodegradation. Biokinetic parameters estimated from single-substrate experiments were utilized to simulate the kinetics of biodegradation of mixture of substrates. Among the various models available for simulating the kinetics of biodegradation of multi-substrate systems, competitive inhibition model performed the best. Performance of the models was evaluated statistically using the dimensionless modified coefficient of efficiency (E). This model was used for simulating the kinetics of biodegradation in binary, ternary, and quaternary substrate systems. This study also reports batch experiments on co-metabolic biodegradation of chloroform, with acetone and toluene as primary substrates. The Haldane model, modified for inhibition due to chloroform, could satisfactorily predict the biodegradation of primary substrate, chloroform, and the microbial growth.  相似文献   

9.
Several demonstrations of the effective biodegradation in soil of pro-oxidant activated polyethylene (PE) have been reported recently. Nevertheless a comprehensive understanding of the ultimate fate in the environment of the oxidized fragments of oxo-biodegradable polyethylene materials needs the extension of the studies to other natural environments and in particular to aqueous media (river, lake, brackish and marine waters) where accidental plastic littering and the resulting degraded fragments eventually may end up.In this respect, as part of our continuing activity in the area of oxo-biodegradable polymeric materials, in the present paper we wish to report on the results attained in an ongoing investigation on the biodegradation in a water medium of thermally pre-oxidized low density polyethylene (LDPE) film samples containing pro-oxidant additives.Thermally oxidized LDPE-film samples and corresponding acetone extractable fractions were submitted to the effect of microorganism flora present in river water. The effective biodegradation was assessed by monitoring the amount of CO2 developed over time in a respirometer apparatus. Levels of biodegradation up to 12 and 48% for the degraded fragments and corresponding fractions extracted with boiling acetone were detected on a 100-day time frame.  相似文献   

10.
A significant increase in the production of plastic materials and the expansion of their areas of application contributed to the accumulation of a large amount of waste of polymeric materials. Most of the polymer composition is made up of plasticizers. Phthalate plasticizers have been recognized as potentially hazardous to humans and the environment due to the long period of their biodegradation and the formation of persistent toxic metabolites. It is known that the industrial plasticizer dioctyl adipate is characterized by reduced toxicity and a short biodegradation period. The paper describes the synthesis of a number of new asymmetric esters based on adipic acid and ethoxylated butanol by azeotropic esterification. The receipt of the products was confirmed by IR spectra. The physicochemical properties of the synthesized compounds were investigated. The glass transition temperatures of PVC composites plasticized with alkyl butoxyethyl adipates were determined using DSC analysis. The ecological safety of esters was assessed by the phytotesting method. Samples of adipates were tested for fungal resistance, and the process of their biodegradation in soil was also studied. It is shown that the synthesized esters have good plasticizing properties and are environmentally safe. When utilized under natural conditions, they can serve as a potential source of carbon for soil microorganisms and do not form stable toxic metabolites; therefore, they are not able to accumulate in nature; when the plasticizers under study are disposed of in the soil, toxic substances do not enter.  相似文献   

11.
测定了热塑性淀粉(TPS)和热塑性双醛淀粉(TPDAS)在堆肥条件下的生物降解能力。根据ISO 14855建立了一套新的测试体系并且验证了这个体系测定高分子材料生物降解性能的可行性。对热塑性淀粉材料生物降解性的测试结果发现化学改性对于淀粉的降解速率和降解速度都有很大的影响。在可控堆肥条件下TPS比TPDAS降解的要快。TPDAS的降解速度和最终的生物降解百分率和双醛淀粉(DAS)的氧化度有密切的关系。文中讨论了存在这种关系的可能原因。有不同降解速率的TPS和TPDAS的降解过程呈现出三个阶段,即迟滞阶段。降解阶段和平稳阶段。  相似文献   

12.
聚丁二酸丁二醇酯在堆肥条件下的生物降解性能研究   总被引:7,自引:1,他引:6  
根据ISO 14855的检测方法,研究了聚丁二酸丁二醇酯(PBS)在堆肥条件下的生物降解性能,结果 表明PBS具有良好的生物降解性,且其形态对其降解速率有显著的影响,降解速率:PBS粉末>PBS片>PBS 颗粒。对堆肥中的微生物进行分离鉴定,在所选堆肥中主要分离出四种菌株:杂色曲霉菌、青霉菌、芽包杆菌 和直杆高温多孢菌,它们对PBS的降解能力各不相同,其中最有效降解PBS的菌株是杂色曲霉菌。  相似文献   

13.
《Electroanalysis》2017,29(5):1341-1349
Magnesium (Mg) and its alloys have increasingly been considered as implant materials for orthopedic, craniofacial, and cardiovascular applications. These materials generally have mechanical properties close to those of human bone and they biodegrade in aqueous environments. The biodegradation properties can be tailored to fit the desired application by changing the alloying elements and/or by addition of surface coatings. To test and compare the biodegradation properties of different materials, immersion tests in solutions ranging from simple salt solutions to complex biological media are commonly done that yield some information about the biodegradation rate and the biodegradation products on the surface after completion of the test. Here we report on a method that allows the continuous real‐time monitoring of the biodegradation process using electrochemical sensors for pH and H2 during immersion of Mg samples in the cell culture medium DMEM/F12 with different concentrations of fetal bovine serum and in the presence of living cells. The sensors effectively indicated the biodegradation behavior of Mg samples in real‐time. This system could be very useful for immersion tests and even supporting biocompatibility testing of implant materials.  相似文献   

14.
The high cost and long duration of the existing standard tests, such as ASTM D5338 and ISO 14855, represents an important drawback in evaluating the biodegradability of polymers. This works presents a new accelerated method for this purpose, based on the use of a Bartha respirometer and biostimulation with yeast extract. The new method was applied to microcrystalline cellulose (MCC), low density polyethylene (LDPE), poly(3-hidroxybutyrate) (PHB), poly(lactic acid) (PLA), poly(vinyl alcohol) (PVOH), polypropylene (PP) and poly(ethylene terephthalate) (PET). The results obtained with these polymers were consistent with those of the standard methods in terms of differentiating biodegradable and non-biodegradable polymers and relative order of biodegradation extent. Besides, a significant reduction of test duration was achieved (from 45 to 110 days with ASTM D5338 or ISO 14855 to 28 days). These results corroborate the potential of the proposed method as a fast test for assessment of biodegradation of polymeric materials.  相似文献   

15.
The plasticized poly(vinyl chloride) (PVC‐P) and its blend with cellulose (PVC‐P/cell) were prepared by means of extrusion. The samples were then biodegraded in forest soil as well as in soil enriched with cellulolytic microorganisms. Moreover, the samples were vaccinated with chosen species of fungi whose direct effect on polymer was then observed. The course of biodegradation was monitored in terms of, and by means of the following: weight loss, carbon dioxide evolved, attenuated total reflectance infrared (FTIR‐ATR) spectroscopy, gel permeation chromatography (GPC), as well as visual and microscopic observation (OM, SEM). The mechanical properties of samples were studied using the standard tensile tests. It was found that biodegradation in soil occurs in PVC‐P and this process is accelerated in the composition of PVC‐P with cellulose. The biodecomposition yield of PVC‐P/cellulose blends (calculated as relative percentage weight loss) is several dozen times higher than that of PVC‐P. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 903–919, 2007  相似文献   

16.
Biodegradation of synthetic polymers is an important property that is used in many applications. Evaluation of the extent of biodegradation has used different methods in recent years. For each environmental compartment, different approaches have to be made in order to obtain valuable data on biodegradability.This review describes validated and accepted methods based on standardized biodegradation tests, analytical tests, enzymatic tests or tests of physical properties to evaluate the biodegradability of synthetic polymers for different types of environmental compartments (e.g., soil, compost or aqueous media).Part II of this review will subsequently report on the environmental biodegradation of different groups of synthetic polymers.  相似文献   

17.
A 23 full factorial experimental design was adopted to estimate the effects of three variables on the biodegradation of oil during soil bioremediation: bioaugmentation seeding a mixed culture, addition of fertilizer or mineral media, and correction of initial pH of the soil to 7.0. The tests were carried out in polyvinyl chloride reactors with 5.0 kg of crude oil-contaminated soil at 14 g/kg. After screening the variables, soil bioremediation tests were conduced with varied C:N ratios, yielding an increase in biodegradation of the oil heavy fraction from 24 to 65%, consumption of total n-paraffins, and a remarkable decrease in the concentration of residual polycyclic aromatic hydrocarbons of the soil.  相似文献   

18.
A research cooperation between USDA and the University of Pisa led to the development of several composite blends of poly(vinyl alcohol) (PVA) and lignocellulosic fibers. The cast films were prepared by blending orange fibers (OR-fibers) and PVA with and without cornstarch to yield flexible and cohesive films. To improve properties, films were also prepared by crosslinking PVA, starch and OR-fibers with hexamethoxymethylmelamine (HMMM). Films were evaluated for their thermal stability, water permeability and biodegradation. Thermal gravimetric analyses indicated the potential usefulness of such blends in several thermoplastic applications. Films were permeable to water, and retained the moisture content in the soil while retaining their integrity. Films generally biodegraded within 30 days in compost, achieving between 50-80% mineralization. Both neat PVA and blends that had been crosslinked showed comparatively slow degradation. A possible stimulating effect of lingocellulosic fillers on the biodegradation of PVA in blends has been observed.  相似文献   

19.
LDPE and its blend with cellulose, obtained by extrusion, were UV-irradiated with different doses or biodegraded in soil up to 1 year. Simultaneously, the same samples were 1 year biodegraded after 20 h UV pre-irradiation in the same conditions. The course of photo- and biodegradation was monitored by estimation of average molecular weights and polydispersity, gel amount, changes of PE crystallinity and mechanical properties. Moreover, the biodegradation degree was calculated on the basis of carbon dioxide evolved and surface morphological changes were observed by SEM. It was found that biodegradation of PE + cellulose is hampered by intermolecular crosslinking of both components. Although, the rate of decomposition of PE + cellulose blends is low it is enough for disintegration of such materials in the natural environment.  相似文献   

20.
合成了一系列苯乙烯.马来酸酐共聚物(SMA)。并对共聚物的结构进行了表征。用土埋法和CO2释放法研究了共聚物的生物降解性。探讨了分子量、组成、环境等因素对生物降解性的影响,发现共聚物的分子量降低。降解率增大;共聚物中马来酸酐含量提高。降解率增大;适宜的环境有利于生物降解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号