共查询到20条相似文献,搜索用时 15 毫秒
1.
Qianqian Cao Chuncheng Zuo Yanhong Ma Lujuan Li Siyan Chen Zhangyou Hu 《Journal of Polymer Science.Polymer Physics》2011,49(12):882-889
We report molecular dynamics simulations on bottle‐brush polyelectrolytes end‐grafted to a planar surface. For each bottle‐brush polyelectrolyte, flexible charged side chains are anchored to one neutral main chain. The effects of the counterion valence and the grafting density on the density profiles and the structural characteristics of the brush were studied in this work. It is found that the electrostatic repulsion between charged monomers in the side chains leads an extended conformation of the brush in a solution containing monovalent counterions, while strong electrostatic binding of multivalent counterions to the side chains has a significant contribution to the collapse of the brush. For the trivalent case, the distribution of end monomers in the main chains becomes broader upon decreasing the grafting density, as compared with the monovalent case. However, the position of the distribution for the monovalent case is relatively insensitive to the change of the grafting density. Additionally, with increased counterion valence, enhanced electrostatic correlation between counterions and charged side chains also weakens the diffusive ability of counterions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 相似文献
2.
Blair Kathryn Brettmann Nicolas Laugel Norman Hoffmann Philip Pincus Matthew Tirrell 《Journal of polymer science. Part A, Polymer chemistry》2016,54(2):284-291
Polyelectrolyte brushes are essential in many aspects of surface functionality, particularly for colloidal stabilization and lubrication in biological and materials science applications. It has been shown experimentally that the brushes undergo an abrupt shrinkage in the presence of multivalent counter-ions. This transition is studied here using a phenomenological mean-field approach with a model that specifically includes bridging of the polyelectrolyte chains by the multiple charges on the multivalent counter-ions. Using an energy balance represented by the sum of electrostatic, polymeric and entropic mean-field terms, additional parameterized phenomenological terms are introduced for counter-ion condensation and for the attractive interaction between adjacent polyelectrolyte chains to account for the bridging effect. The free energy is minimized with respect to the counter-ion populations and the brush height. In agreement with experimental observations, increasing the concentration of multivalent ions leads to a sharp collapse of the polyelectrolyte brush height. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 284–291 相似文献
3.
Bifunctional spherical polyelectrolyte brushes(SPBs)with tunable thermo-and pH-sensitivity are synthesized by combining thermo-controlled emulsion polymerization and photo-emulsion polymerization.They consist of a spherical polystyrene core and a shell of mixed brushes of poly(N-isopropylacrylamide)(PNIPAM)and poly(acrylic acid)(PAA) whose composition can be easily modulated by the dose of monomers.The kinetics of SPB synthesis as well as their size change with temperature and pH is determined by dynamic light scattering(DLS).The scanning electron microscopy(SEM) images show that the bifunctional SPBs have a defined spherical morphology with a narrow size distribution. 相似文献
4.
Uwe Freudenberg Passant Atallah Jens-Uwe Sommer Carsten Werner Matthias Ballauff 《Macromolecular bioscience》2023,23(6):2200561
A model describing the binding of biological signaling proteins to highly charged polymer networks is presented. The networks are formed by polyelectrolyte chains for which the distance between two charges at the chain is smaller than the Bjerrum length. Counterion condensation on such highly charged chains immobilizes a part of the counterions. The Donnan-equilibrium between the polymer network and the aqueous solution with salt concentration is used to calculate the salt concentration of the co- and counterions entering the network. Two factors are decisive: i) The electrostatic interaction between the network and the protein is given by the Donnan-potential of the network and the net charge of the protein. In addition to this leading term, a second term describes the change in the Born-energy of the proteins when entering the network. ii) The interaction of the protein with the highly charged chains within the network is governed by counterion release: Patches of positive charge at the protein become multivalent counterions of the polyelectrolyte chains thus releasing a concomitant number of condensed counterions. The model compares favorably to experimental data obtained on a set of biohybrid polymer networks composed of crosslinked glycosaminoglycan chains that interact with a mixture of key signaling proteins. 相似文献
5.
Zhishuang Ye Li Li Liheng Dai Yunwei Wang Qingsong Yang Regine von Klitzing Xuhong Guo 《Journal of polymer science. Part A, Polymer chemistry》2020,58(21):3018-3030
The selective uptake of bovine serum albumin (BSA) and β-glucosidase (β-G) by annealed and quenched cationic spherical polyelectrolyte brushes (SPB) was systematically studied by combining turbidimetric titration, dynamic light scattering and small angle X-ray scattering (SAXS). These two kinds of SPB consist of a same polystyrene core and a dense shell of poly (2-aminoethyl methacrylate hydrochloride) (PAEMH) and poly [2-(methacryloyloxy) ethyl] trimethylammonium chloride (PMAETA), respectively. Results reveal that the adsorption/desorption of proteins on SPB can be easily controlled by changing external conditions (pH and ionic strength). For a particular annealed or quenched SPB, there is a significant difference of the interaction pH regions between the brush and the two proteins, and this difference can be tuned by ionic strength. At low ionic strength, quenched brushes were more suitable for selective adsorption of BSA and β-G, while annealed brushes performed better at high ionic strength. SAXS analysis demonstrated that volume exclusion effect played a remarkable role in protein uptake by both SPB, and larger proteins were more likely to be adsorbed on the outer layer of the brush. The unique core-shell structure and controllable chain types make SPB an excellent candidate in selective adsorption/separation of proteins of different sizes. 相似文献
6.
以聚苯乙烯(PS)纳米球为核,利用紫外光引发聚甲基丙烯酸N,N-二甲基氨基乙酯(PDMAEMA)接枝到PS纳米球上,得到对CO_2有刺激响应的聚甲基丙烯酸N,N-二甲基氨基乙酯刷(PS-PDMAEMA)。动态光散射(DLS)、电导率结果表明PS-PDMAMEA具有CO_2刺激响应性。该微粒可以作为Pickering乳液的乳化剂,通过导入CO_2或N_2作为开关,进而破坏或稳定Pickering乳液。用数码照片、偏光显微镜等方法表征了乳液的稳定情况。结果表明:PS-PDMAEMA具有很好的CO_2刺激响应性,利用PS-PDMAEMA作为乳化剂稳定Pickering乳液,仅仅依靠气体开关(CO_2或N_2)就可改变乳液的稳定性。 相似文献
7.
Harnoor Singh Sachar Vishal Sankar Sivasankar Sai Ankit Etha Guang Chen Siddhartha Das 《Electrophoresis》2020,41(7-8):554-561
8.
Zhishuang Ye Li Li Fang Zhao Yuchuan Tian Yunwei Wang Qingsong Yang Liheng Dai Xuhong Guo 《Journal of Polymer Science.Polymer Physics》2019,57(12):738-747
The spatial correlation of counterions [Li+, Na+, Rb+, Cs+, NH4+, (CH3)4N+] with spherical polyelectrolyte brushes (SPBs), which consist of a PS core and chemically grafted PSS chains, was comprehensively studied through a combination of SAXS, DLS, and Zeta potential. Results show that the SAXS intensity profiles of the brush appears to be “insensitive” to the concentration of Na+. By contrast, introducing salt ions with a density lower than sodium [NH4+, (CH3)4N+ and Li+] into the brush layer will cause a decrease in the scattering intensity while introducing those with a higher density than sodium (Rb+ and Cs+) will cause the opposite result. As verified by the combined results of SAXS, DLS, and Zeta potential, the collapse of the brush and the enrichment of the counterions in the brush layer occur simultaneously. It was further demonstrated that the concentration of counterions enriched in the innermost layer of the brush shell can be enhanced up to hundreds of times compared with the bulk concentration, and the counterion distribution in SPB shell follows a radial attenuation distribution. SAXS is confirmed to be powerful in probing the enrichment and distribution of counterions within SPB. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 738–747 相似文献
9.
10.
Kalliopi Miliou Leonidas N. Gergidis Costas Vlahos 《Journal of Polymer Science.Polymer Physics》2017,55(14):1110-1117
Using molecular dynamics simulations, we have studied polyelectrolyte brushes formed by partially or fully charged star polymers tethered on a planar surface under theta solvent conditions. The diagram of states for salt‐free solutions differs in the location of osmotic regime (OB) compared with the respective diagram reported by Borisov and Zhulina. In contrast, simulation results dictate that the OB regime appears for values of the ratio F /α ?1/2 lB ?1 much larger than unity, which is the threshold of counterion localization, with F denoting the branch functionality, α the charged units fraction and lB the Bjerrum length. The simulation results support that the brush height scaling laws H ~ α 2 lB F 1.049S 3s ?1 and H ~ α0.302 F 0.23S for the charged Pincus Brush (PB) and osmotic (OB) regimes, respectively, where S is the spacer length and s is the grafted area per star chain. The respective theoretical scaling laws are H ~ α 2 lB F 1.88S 3s ?1 and H ~ α 1/2 F 0.44S . © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 1110–1117 相似文献
11.
Molecules can partition from a solution into a polymer coating, leading to a local enrichment. If one can control this enrichment via external stimuli, one can implement such coatings in novel separation technologies. Unfortunately, these coatings are often resource intensive as they require stimuli in the form changes of bulk solvent conditions such as acidity, temperature, or ionic strength. Electrically driven separation technology may provide an appealing alternative, as this will allow local, surface-bound stimuli instead of system-wide bulk stimuli to induce responsiveness. Therefore, we investigate via coarse grained molecular dynamics simulations the possibility of using coatings with charged moieties, specifically gradient polyelectrolyte brushes, to control the enrichment of the neutral target molecules near the surface with applied electric fields. We find that targets which interact more strongly with the brush show both more absorption and a larger modulation by electric fields. For the strongest interactions evaluated in this work, we obtained absorption changes of over 300 % between the collapsed and extended state of the coating. 相似文献
12.
应用标度理论研究了外加的高价反离子对柱状聚电解质刷的影响.以外加盐浓度的不同,在单价盐情况下,强和弱聚电解质刷分别有2个和3个标度区域,而在高价盐情况下,柱状聚电解质刷的行为可分为4个区域.第一个区域,盐浓度很低,刷的行为不依赖于外加盐浓度.第二个区域,外加盐浓度对刷的行为开始有影响,刷的厚度随外加盐浓度增大而减小.第三个区域,强聚电解质刷厚度不依赖于外加盐浓度,而弱聚电解质刷厚度反而随外加盐浓度增大而升高.第四个区域,聚电解质刷厚度随外加盐浓度升高而降低,行为类似单价盐情形下的盐刷.这些区域都是链熵弹性与小离子渗透压平衡造成的,与单价和高价反离子在刷内的交换密切相关.新发现的区域尚待实验和计算机模拟的验证. 相似文献
13.
A tetrahedral polyelectrolyte brush in the presence of trivalent counterions is researched under the condition of good solution by mea ns of molecular dynamics simulati ons.Grafting density and charge fraction are varied to gen erate a series of surface patter ns.Lateral microphase separation happens and various interesting pinned patches appear at appropriate charge fraction and grafting density.Through a careful analysis on the brush thickness,the pair correlation functions,the distributions of net charge,and the four states of trivalent counterions in the brush,we find that the ordered surface patterns and special properties are induced by the pure electrostatic correlation effect of trivalent ions even in the good solvent.Furthermore,the dependences of electrostatic correlation on the charge fraction of tethered chains are evaluated for fixed grafting den sity.Also,our results can serve as a guide for precise control over the stimuli-responsive materials rational and self-assembly of nanoparticles. 相似文献
14.
U.R.Mikael Kjellin Per M. Claesson Roland Audebert 《Journal of colloid and interface science》1997,190(2):476
Interactions between two negatively charged mica surfaces across aqueous solutions containing various amounts of a 10% charged cationic polyelectrolyte have been studied. It is found that the mica surface charge is neutralized when the polyelectrolyte is adsorbed from a 10–50 ppm aqueous solution. Consequently no electrostatic double-layer force is observed. Instead an attractive force acts between the surfaces in the distance regime 250–100 Å. We suggest that this attraction is caused by bridging. Additional adsorption takes place when the polyelectrolyte concentration is increased to 100 and 300 ppm, and a long-range repulsion develops. This repulsive force is both of electrostatic and steric origin. The polyelectrolyte layer adsorbed from a 50 ppm solution does not desorb when the polyelectrolyte solution is replaced with an aqueous polyelectrolyte-free solution. Injection of sodium dodecyl sulfate (SDS) into the measuring chamber to a concentration of about 0.01 CMC (8.3 × 10−5M) does not affect the adsorbed layers or the interaction forces. However, when the SDS concentration is increased to 0.02 CMC (0.166 mM) the adsorbed layer expands dramatically due to adsorption of SDS to the polyelectrolyte chains. The sudden swelling suggests a cooperative adsorption of SDS to the preadsorbed polyelectrolyte layer and that the critical aggregation concentration between the polyelectrolyte and SDS at the surface is about 0.02 CMC. The flocculation behavior of the polyelectrolyte in solution upon addition of SDS was also examined. It was found that 0.16–0.32 mol SDS/mol charged segments on the polyelectrolyte is enough to make the solution slightly turbid. 相似文献
15.
Mongyoung Huh Young Soo Park Min–Hye Jung Shin Jae Kang Tae-Beom Kang Abdul Munam 《高分子科学杂志,A辑:纯化学与应用化学》2013,50(3):251-258
The adsorption of charged dendrigraft (arborescent) copolymers of different generations (G1, G2) and side chain molecular weights (Mn ≈ 5000 or 30,000) on silica surfaces in water, was monitored by the quartz crystal microbalance dissipation (QCM-D) technique. The topology of the adsorbed copolymers on mica was also investigated by AFM measurements. The PS-P2VP [polystyrene-graft-poly(2-vinylpyridine)] copolymers readily interact with a silica or mica surface and form a thin layer in acidic water (pH 2) due to the positively charged P2VP shell branches. The adsorbed arborescent PS-P2VP films expanded and collapsed reversibly in water upon cycling between low and high pH values, respectively. As the generation number increased, the density of copolymer molecules adsorbed onto the surface decreased due to stronger intermolecular electrostatic repulsions. The adsorption density also decreased significantly for copolymers with longer P2VP chains due to their more expanded conformation on the surface. 相似文献
16.
This article demonstrates a water‐lubrication system using high‐density hydrophilic polymer brushes consisting of 2,3‐dehydroxypropyl methacrylate (DHMA), vinyl alcohol, oligo(ethylene glycol)methyl ether methacrylate, 2‐(methacryloyloxy)ethyltrimethylammonium chloride (MTAC), 3‐sulfopropyl methacrylate potassium salt (SPMK), and 2‐methacryloyloxyethyl phosphorylcholine (MPC) prepared by surface‐initiated controlled radical polymerization. Macroscopic frictional properties of brush surfaces were characterized by sliding a glass ball probe in water using a ball‐on‐plate type tribotester under the load of 0.1–0.49 N at the sliding velocity of 10?5–10?1 m s?1 at 298 K. A poly(DHMA) brush showed a relatively larger friction coefficient in water, whereas the polyelectrolyte brushes, such as poly(SPMK) and poly(MPC), revealed significantly low friction coefficients below 0.02 in water and in humid air conditions. A drastic reduction in the friction coefficient of polyelectrolyte brushes in aqueous solution was observed at around 10?3–10?2 m s?1 owing to the hydrodynamic lubrication effect, however, an increase in salt concentration in the aqueous solution led to the increase in the friction coefficients of poly(MTAC) and poly(SPMK) brushes. The poly(SPMK) brush showed a stable and low friction coefficient in water even after sliding over 450 friction cycles, indicating a good wear resistance of the brush film. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 10: 208–216; 2010: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.201000001 相似文献
17.
The captioned question has been addressed by the steric effect; namely, the adsorption of proteins on a surface grafted with linear polymer chains decreases monotonically as the grafting density increases. However, there is no quantitative and satisfactory explanation why the adsorption starts to increase when the grafting density is sufficiently high and why polyethylene glycol(PEG) still remains as one of the best polymers to repel proteins. After considering each grafted chain as a molecular spring confined inside a "tube" made of its surrounding grafted chains, we estimated how its free energy depends on the grafting density and chain length, and calculated its thermal energy-agitated chain conformation fluctuation, enabling us to predict an adsorption minimum at a proper grafting density, which agrees well with previous experimental results. We propose that it is such a chain fluctuation that slows down the adsorption kinetically. 相似文献
18.
Summary: It has been demonstrated that diffusion of polycation adsorbed on glass microspheres occurs without desorption of the macromolecules into the solution and, therefore, can be characterizerd as 2D-diffusion. The diffusion coefficint is estimated to be 1.4 × 10−12 cm2/s. 相似文献
19.
Matthias Menzel Wei‐Liang Chen Kimberly Simancas Hong Xu Oswald Prucker Christopher K. Ober Jürgen Rühe 《Journal of polymer science. Part A, Polymer chemistry》2019,57(12):1283-1295
The stability of nonpatterned and nanopatterned strong polyelectrolyte brushes (PEBs) is studied as a function of both brush character and the properties of a contacting liquid. High‐molecular‐weight PEBs of poly(4‐methyl vinylpyridinium iodide) (PMeVP) are synthesized using surface‐initiated radical‐chain polymerization. Nanopatterned brushes (NPBs) line with pattern sizes ranging from 50 to 200 nm are generated by patterning the initiator layer using deep‐ultraviolet photolithography followed by brush growth initiated from the patterned layer. Homogeneous PEBs with different degrees of charging and grafting densities are exposed to water and salt solutions with different temperatures for different periods. The degradation is monitored through dry‐state ellipsometry and atomic force microscopy measurements. Enhanced degrafting for more strongly swollen polymer brushes can be observed in agreement with an “entropic spring” model. Based on the results of the nonpatterned brushes, the NPBs are exposed to water at different temperatures and external salt content for varying periods of time. Counterintuitively, the NPBs show increased degrafting for smaller patterns, which is attributed to different polymer chain dynamics for nanobrushes and microbrushes. We investigate the influence of thermodynamic and kinetic parameters on the stability of (nanopatterned) PEBs and discuss the role of entanglements and formation of complexes in such films. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1283–1295 相似文献
20.
Zhishuang Ye Li Li Fang Zhao Haoya Han Yuchuan Tian Yunwei Wang Qingsong Yang Wenting Fan Xuhong Guo 《Journal of polymer science. Part A, Polymer chemistry》2018,56(23):1577-1588
The immobilization of lysozymes (pI = 11) onto anionic spherical polyelectrolyte brushes (SPB) which consist of a solid polystyrene core and a densely grafted poly(styrene sulfonate) (PSS) shell was systematically studied by fluorescence spectroscopy and small angle X-ray scattering. Results show that the capture of lysozyme by PSS brush is a dynamic process, which involves a quick agglomeration stage and a slow rearrangement one. And lysozyme inclines to immobilize in the inner layer of the brush, and saturation of lysozyme adsorption onto the SPB is gradually reached as the protein concentration increases, proceeding from the inside to the outside of the brush layers. As increasing the pH and ionic strength, the lysozyme previously adsorbed will be partially released and migrate from the inner to the outer layer of SPB. Last competitive adsorption tests between lysozyme and BSA or β-glucosidase were performed, indicating that besides electrostatic interaction counterion release force also plays an important role in protein adsorption. SPB was proved to be ideal candidate for controllable immobilization of protein, which can be extended into various applications, such as drug delivery and protein separation. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1577–1588 相似文献