首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many of the fundamental questions regarding the solid‐state chemistry of boron are still unsolved, more than 200 years after its discovery. Recently, theoretical work on the existence and stability of known and new modifications of the element combined with high‐pressure and high‐temperature experiments have revealed new aspects. A lot has also happened over the last few years in the field of reactions between boron and main group elements. Binary compounds such as B6O, MgB2, LiB1?x, Na3B20, and CaB6 have caused much excitement, but the electron‐precise, colorless boride carbides Li2B12C2, LiB13C2, and MgB12C2 as well as the graphite analogue BeB2C2 also deserve special attention. Physical properties such as hardness, superconductivity, neutron scattering length, and thermoelectricity have also made boron‐rich compounds attractive to materials research and for applications. The greatest challenges to boron chemistry, however, are still the synthesis of monophasic products in macroscopic quantities and in the form of single crystals, the unequivocal identification and determination of crystal structures, and a thorough understanding of their electronic situation. Linked polyhedra are the dominating structural elements of the boron‐rich compounds of the main group elements. In many cases, their structures can be derived from those that have been assigned to modifications of the element. Again, even these require a critical revision and discussion.  相似文献   

2.
Boron and mixed‐boron clusters have received considerable attention because of their wide applications and their essential roles in advancing chemical bonding models. Bearing the bright prospects as building blocks to form novel polymeric materials, the sulfur‐rich boron sulfides have been greatly studied. However, the knowledge of the boron‐rich boron sulfides is much rare. In this article, we report an extensive theoretical study on the structural, energetic, and stability features of a hitherto unknown septa‐atomic cluster B6S at the CCSD(T)/6‐311+G(2df)//B3LYP/6‐311+G(d) level. The local minimum isomers were obtained through our recently developed program “grid‐based comprehensive isomeric search algorithm.” The results show that the planar knife‐like isomer B5(?BS) 01 (0.0 kcal/mol) containing the ?BS moiety is the lowest energy, followed by the quasi‐planar belt‐like isomer B6(>S) 02 (6.7 kcal/mol) and the pyramid‐like isomer B6(>S) 03 (8.4 kcal/mol). Notably, the three singlet isomers all have good kinetic stability on the basis of the potential energy surface analysis. The B/S‐centered wheel‐like isomers are unfavorable in thermodynamics and kinetics. The triplet state structures generally can not compete with the singlet ones. The results are compared to the analogous and isoelectronic cluster B6O. Our work is expected to provide useful information for understanding the structures and stability of boron sulfides. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

3.
An intriguing structural transition from the quasi‐planar form of B12 cluster upon the interaction with lithium atoms is reported. High‐level computations show that the lowest energy structures of LiB12, Li2B12, and Li3B12 have quasi‐planar (Cs), tubular (D6d), and cage‐like (Cs) geometries, respectively. The energetic cost of distorting the B12 quasi‐planar fragment is overcompensated by an enhanced electrostatic interaction between the Li cations and the tubular or cage‐like B12 fragments, which is the main reason of such drastic structural changes, resulting in the smallest tubular (Li2B12) and cage‐like (Li3B12) boron structures reported to date.  相似文献   

4.
Herein we present the first solid‐state structures of tetraiododiborane(4) (B2I4), which was long believed to exist in all phases as discrete molecules with planar, tricoordinate boron atoms, like the lighter tetrahalodiboranes(4) B2F4, B2Cl4, and B2Br4. Single‐crystal X‐ray diffraction, solid‐state NMR, and IR measurements indicate that B2I4 in fact exists as two different polymeric forms in the solid state, both of which feature boron atoms in tetrahedral environments. DFT calculations are used to simulate the IR spectra of the solution and solid‐state structures, and these are compared with the experimental spectra.  相似文献   

5.
Ca1–xB2C4 (x ~ 0.08) and Ca1–xB2C6 (x ~ 0.04) are two compounds containing heterographene‐B,C nets which were prepared by solid state synthesis and structurally characterized by X‐ray powder diffraction data. Both compounds crystallize in the space group P6/ mmm (No. 191). The lattice constants are a = 4.55971(5) Å and c = 4.4020(1) Å for CaB2C4 and a = 2.58390(5) Å, c = 4.43597(8) Å for CaB2C6. The calcium atoms are intercalated between the heterographene (B,C) nets. The calcium atom distribution in Ca1–xB2C6 is disordered, leading to diffuse scattering. A model for this disorder was developed that matches well the observed diffuse scattering observed in the electron diffraction pattern. For Ca1–xB2C6 and its decomposition products magnetic and electric properties are being reported.  相似文献   

6.
《Vibrational Spectroscopy》2007,43(2):288-291
We report significant difference in the Raman spectra of two different kinds of CaB6 single crystals grown from boron purity 99.9% (3N) or 99.9999% (6N), respectively. Our Raman spectra of CaB6 (3N), which are similar to those of previous measurement [N. Ogita, S. Nagai, N. Okamoto, M. Udagawa, F. Iga, M. Sera, J. Akimitsu, S. Kunii, Phys. Rev. B 68 (2003) 224305], show peaks at 781.3 cm−1 (T2g), 1140.1 cm−1 (Eg), and 1283.5 cm−1 (A1g). The Eg mode shows a characteristic double-peak feature due to an additional weak broad peak centered at 1156.0 cm−1. However, the Raman spectra of CaB6 (6N) show sharp peaks at 772.5 cm−1 (T2g), 1137.9 cm−1 (Eg), and 1266.6 cm−1 (A1g). The peak frequencies are down shifted as much as 17 cm−1. In addition, no additional peak feature is observed for the Eg mode so that the mode is symmetric in the case of CaB6 (6N). The X-ray powder diffraction patterns for both CaB6 (3N) and CaB6 (6N) show that the lattice parameters are essentially the same. The majority of the impurity in the 99.9% (3N) boron is assessed to be C. Thus we prepared Ca(B0.995C0.005)6, CaB6 (6N) doped with C, and looked for the difference in the Raman spectra. The Raman spectra of Ca(B0.995C0.005)6 are nearly identical to those of CaB6 (6N), indicating that the difference in the Raman spectra of CaB6 (3N) and CaB6 (6N) is not due to C impurity. However, presence of impurity, even if small amount, seems to be enough to trigger local-structure changes to lower symmetry inducing the difference in Raman spectra of CaB6 (3N) and CaB6 (6N).  相似文献   

7.
A class of polymeric compounds containing boron–boron triple bonds stabilized by N‐heterocyclic biscarbenes is proposed. Since a triply bonded B2 is related to its third excited state, the predicted macromolecule would be composed by several units of an electronically excited first‐row homonuclear dimer. Moreover, it is shown that the replacement of biscarbene with N2 or CO as spacers could change the bonding profile of the boron–boron units to a cumulene‐like structure. Based on these results, different types of diboryne polymers are proposed, which could lead to an unprecedented set of boron materials with distinct physical properties. The novel diboryne macromolecules could be synthesized by the reaction of Janus‐type biscarbenes with tetrabromodiborane, B2Br4, and sodium naphthalenide, [Na(C10H8)], similarly to Braunschweig’s work on the room temperature stable boron–boron triple bond compounds (Science, 2012 , 336, 1420).  相似文献   

8.
The crystal structures of numerous iodinated ortho‐carboranes have been studied, which has revealed the diversity of intermolecular interactions that these substances can adopt in the solid state. The nature—mostly as it relates to hydrogen and/or halogen bonds—and relative strength of such interactions can be adjusted by selectively introducing substituents onto the cluster, thus enabling the rational design of crystal lattices. In this work we present the newly determined crystal structures of the following iodinated ortho‐carboranes: 9‐I‐1,2‐closo‐C2B10H11, 4,5,7,8,9,10,11,12‐I8‐1,2‐closo‐C2B10H4, 3,4,5,6,7,8,9,10,11,12‐I10‐1,2‐closo‐C2B10H2, 1‐Me‐8,9,10,12‐I4‐1,2‐closo‐C2B10H7, 1,2‐Me2‐8,9,10,12‐I4‐1,2‐closo‐C2B10H6, and 1,2‐Ph2‐8,9,10,12‐I4‐1,2‐closo‐C2B10H6. Their 3D supramolecular organization has been thoroughly investigated and compared to similar previously published crystal structures. Such a systematic survey has allowed us to draw some general trends. Cc? H???I? B hydrogen bonds (Cc= cluster carbon atoms) appear to be significant in the growth of the crystal lattices of these compounds, given the acidity of hydrogen atoms bonded to Cc, and the polarization of B? I bonds. These hydrogen bonds can be disrupted by selectively blocking the positions next to Cc, that is, B(3) and B(6), with bulky substituents that prevent iodine atoms from approaching as hydrogen acceptors. Halogen bonds of the type B? I???I? B are frequently observed in most cases, thus suggesting that these interactions could be attractive in boron clusters. In addition, different substituents can be grafted onto the ortho‐carborane surface, thereby providing further possibilities for homomeric or heteromeric molecular assembly.  相似文献   

9.
The structure of a new magnesium nitridoboride, MgNB9, has been refined from single‐crystal X‐ray data. The Mg and N atoms lie on sites with crystallographic 3m symmetry. The structure consists of two layers alternating along the c axis. The NB6 layer, with B12 icosahedra, has the C2B13 structure type. Within this layer, boron icosahedra are bonded to N atoms, each coordinating to three boron polyhedra. Another MgB3 layer, with B6 octahedra, does not belong to any known structure type. The boron icosahedra and octahedra are connected to each other, thus forming a three‐dimensional boron framework.  相似文献   

10.
Hückel π aromaticity is typically a domain of carbon‐rich compounds. Only very few analogues with non‐carbon frameworks are currently known, all involving the heavier elements. The isolation of the triboracyclopropenyl dianion is presented, a boron‐based analogue of the cyclopropenyl cation, which belongs to the prototypical class of Hückel π aromatics. Reduction of Cl2BNCy2 by sodium metal produced [B3(NCy2)3]2?, which was isolated as its dimeric Na+ salt (Na4[B3(NCy2)3]2?2 DME; 1 ) in 45 % yield and characterized by single‐crystal X‐ray diffraction. Cyclic voltammetry measurements established an extremely high oxidation potential for 1 (Epc=?2.42 V), which was further confirmed by reactivity studies. The Hückel‐type π aromatic character of the [B3(NCy2)3]2? dianion was verified by various theoretical methods, which clearly indicated π aromaticity for the B3 core of a similar magnitude to that in [C3H3]+ and benzene.  相似文献   

11.
Through integrative consideration of NICS, MO, MOC and NBO, we precisely investigated delocalization and bonding characters of C6, C6H6, B3N3 and B3N3H6 molecules. Firstly, we originally discovered and testified that C6 cluster was sp2 hybridization. Negative NICS values in 0 and 1 Å indicated that C6 had δ and Π aromaticity. Secondly, B3N3 with sp2 hybridization had obvious δ aromaticity. Finally, WBI values approved that there were delocalization in C6, C6H6 and B3N3 molecules, but B3N3H6 structure did not have delocalization with the WBI 1.0. Moreover, total WBI values of carbon, boron and nitrogen atoms were four, three and three, respectively. Namely, the electrons of B3N3H6 and B3N3 were localized in nitrogen atoms and they did not form delocalized bonding. In a word, bonding characters of carbon, boron and nitrogen atoms were dissimilar although the molecules composed of carbon, boron and nitrogen were regarded as isoelectronic structures.  相似文献   

12.
The electron‐precise binary boron subhalide species [B2X6]2? X=F, Br, I) were synthesized and their structures confirmed by X‐ray crystallography. The existence of the previously claimed [B2Cl6]2?, which had been questioned, was also confirmed by X‐ray crystallography. The dianions are isoelectronic to hexahaloethanes, are subhalide analogues of the well‐known tetrahaloborate anions (BX4?), and are rare examples of molecular electron‐precise binary boron species beyond B2X4, BX3, and [BX4]?.  相似文献   

13.
Extensive optimisation calculations are performed for the B80 isomers in order to find out which principles underlie the formation of large hollow boron cages. Our analysis shows that the most stable isomers contain triangular B10 or rhombohedral B16 building blocks. The lowest‐energy isomer has C3v symmetry and is characterised by a belt of three interconnected B16 units and two separate B10 units. At the B3LYP/6‐31G(d) level of theory, this newly discovered isomer is 2.29, 1.48, and 0.54 eV below the leapfrog B80 of Szwacki et al., the Th‐B80 of Wang, and the D3d‐B80 of Pochet et al., respectively. Our C3v isomer is therefore identified as the most stable hollow cage isomer of B80 presently known. Its HOMO–LUMO gap of 1.6 eV approaches that of the leapfrog B80. The leapfrog principle still remains a reliable scheme for producing boron cages with larger HOMO–LUMO gaps, whereas the thermodynamically most stable B80 cages are formed when all pentagonal faces are capped. We show that large hollow cages of boron retain a preference for fullerene frames. The additional capping is in accordance with the following rules: preference for capping of pentagonal faces, formation of B10 and/or B16 units, homogeneous distribution of the hexagonal caps, and hole density approaching 1/9. Although our most stable B80 isomer still remains higher in energy than the B80 core–shell structure, we show that by applying the bonding principles to larger structures it is possible to construct boron cages with higher stabilisation energy per boron atom than the core–shell structure; a prototypical example is B160. This clearly shows the continuous competition between the two suggested construction schemes, namely, the formation of multiple‐shell structures and hollow cages.  相似文献   

14.
The structures, stabilities, nature of bonding, and potential energy surfaces of low‐energy isomers of planar CnB5 (n = 1?7) have been systematically explored at the CCSD(T)/6‐311+G(d)//B3LYP/6‐311+G(d) level. Incremental binding energy (IBE) and second order energy difference (Δ2E) analyses demonstrate that CnB5 clusters with even n have relatively higher stability. The nature of bonding in these clusters is discussed based on valence molecular orbital (VMO), and Mayer bond order (MBO). Hückel (4n + 2) rule and nucleus‐independent chemical shift (NICS) values suggest that the ground states of C3B5, C4B5, and C7B5 have π aromaticity. VMO, electron localization function (ELF), adaptive natural density partitioning (AdNDP), and NICS analyses reveal the double aromaticity of C3B5 cation. CB5 and C3B5 are stable both thermodynamically and kinetically based on isomerization analysis. In addition, the simulated IR spectra are expected to be helpful for future experimental studies of these clusters.  相似文献   

15.
It has been shown by electrospray ionization–ion‐trap mass spectrometry that B12I122? converts to an intact B12 cluster as a result of successive stripping of single iodine radicals or ions. Herein, the structure and stability of all intermediate B12In? species (n=11 to 1) determined by means of first‐principles calculations are reported. The initial predominant loss of an iodine radical occurs most probably via the triplet state of B12I122?, and the reaction path for loss of an iodide ion from the singlet state crosses that from the triplet state. Experimentally, the boron clusters resulting from B12I122? through loss of either iodide or iodine occur at the same excitation energy in the ion trap. It is shown that the icosahedral B12 unit commonly observed in dodecaborate compounds is destabilized while losing iodine. The boron framework opens to nonicosahedral structures with five to seven iodine atoms left. The temperature of the ions has a considerable influence on the relative stability near the opening of the clusters. The most stable structures with five to seven iodine atoms are neither planar nor icosahedral.  相似文献   

16.
In the present work, we mainly study dissociation of the C 2B1, D2A1, and E2B2 states of the SO2+ ion using the complete active‐space self‐consistent field (CASSCF) and multiconfiguration second‐order perturbation theory (CASPT2) methods. We first performed CASPT2 potential energy curve (PEC) calculations for S‐ and O‐loss dissociation from the X, A, B, C, D, and E primarily ionization states and many quartet states. For studying S‐loss predissociation of the C, D, and E states by the quartet states to the first, second, and third S‐loss dissociation limits, the CASSCF minimum energy crossing point (MECP) calculations for the doublet/quartet state pairs were performed, and then the CASPT2 energies and CASSCF spin‐orbit couplings were calculated at the MECPs. Our calculations predict eight S‐loss predissociation processes (via MECPs and transition states) for the C, D, and E states and the energetics for these processes are reported. This study indicates that the C and D states can adiabatically dissociate to the first O‐loss dissociation limit. Our calculations (PEC and MECP) predict a predissociation process for the E state to the first O‐loss limit. Our calculations also predict that the E2B2 state could dissociate to the first S‐ and O‐loss limits via the A2B2E2B2 transition. On the basis of the 13 predicted processes, we discussed the S‐ and O‐loss dissociation mechanisms of the C, D, and E states proposed in the previous experimental studies. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

17.
The newly discovered borospherenes B40?/0 and B39? mark the onset of a new class of boron nanostructures. Based on extensive first‐principles calculations, we introduce herein two new chiral members to the borospherene family: the cage‐like C1 B41+ ( 1 ) and C2 B422+ ( 2 ), both of which are the global minima of the systems with degenerate enantiomers. These chiral borospherene cations are composed of twelve interwoven boron double chains with six hexagonal and heptagonal faces and may be viewed as the cuborenes analogous to cubane (C8H8). Chemical bonding analyses show that there exists a three‐center two‐electron σ bond on each B3 triangle and twelve multicenter two‐electron π bonds over the σ skeleton. Molecular dynamics simulations indicate that C1 B41+ ( 1 ) fluctuates above 300 K, whereas C2 B422+ ( 2 ) remains dynamically stable. The infrared and Raman spectra of these borospherene cations are predicted to facilitate their experimental characterizations.  相似文献   

18.
Systematic studies on selenoborates containing a B12 cluster entity and alkali metal cations led to the new crystalline phase Na6[B18Se17] which consists of a icosahedral B12 cluster completely saturated with trigonal‐planar BSe3 units and sodium counter‐ions. Neighbouring cluster entities are connected in one direction via exocyclic selenium atoms forming the infinite chain anion ([B18Se16Se2/2]6–). The new chalcogenoborate was prepared in a solid state reaction from sodium selenide, amorphous boron and selenium in evacuated carbon coated silica tubes at a temperature of 850 °C. Na6[B18Se17] crystallizes in the monoclinic space group C2/c (no. 15) with a = 18.005(4) Å, b = 16.549(3) Å, c = 11.245(2) Å, β = 91.35(3)° and Z = 4.  相似文献   

19.
o‐Carborane (C2B10H12) was adapted to perform as the core of globular macromolecules, dendrons or dendrimers. To meet this objective, precisely defined substitution patterns of terminal olefin groups on the carborane framework were subjected to Heck cross‐coupling reactions or hydroboration leading to hydroxyl terminated arms. These led to new terminal groups (chloro, bromo, and tosyl leaving groups, organic acid, and azide) that permitted ester production, click chemistry, and oxonium ring opening to be performed as examples of reactions that demonstrate the wide possibilities of the globular icosahedral carboranes to produce new dendritic or dendrimer‐like structures. Polyanionic species were obtained in high yield through the ring‐opening reaction of cyclic oxonium compound [3,3′‐Co(8‐C4H8O2‐1,2‐C2B9H10)(1′,2′‐C2B9H11)] by using terminal hydroxyl groups as nucleophiles. These new polyanionic compounds that contain multiple metallacarborane clusters at their periphery may prove useful as new classes of compounds for boron neutron capture therapy with enhanced water solubility and as cores to make a new class of high‐boron globular macromolecules.  相似文献   

20.
Products of the zirconium powder reaction with amorphous boron in a Na2B4O7 ionic melt at 650–850°C and those of the ZrCl4 reaction with NaBH4 at 300–725°C have been studied by means of X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, thermogravimetry, and elemental analysis. At temperature ≥750°C, single-phase ZrB2 with the particle size of 60–80 nm is formed in a Na2B4O7 ionic melt, whereas the ZrB2 powder obtained via the reaction of ZrCl4 with NaBH4 at temperature ≥575°C consists of particles differing in the shape, some of which are close to spherical with diameter of 10–35 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号