首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Polysulfonylamines. CLII. Crystal Structures of Metal Di(methanesulfonyl) amides. 6. Three Layer Structures: The Isotypic Binary Compounds M[(MeSO2)2N]2 (M = Sr, Pb) and the Ethanol Solvate Pb[(MeSO2)2N]2 · EtOH Low‐temperature X‐ray crystal structures are reported for the layer compounds SrA2 (monoclinic, space group P21/n, Z′ = 1), PbA2 (isotypic and isostructural with SrA2), and PbA2·EtOH (triclinic, P1¯, Z′ = 1), where A denotes the anion obtained by deprotonation of the strong NH acid (MeSO2)2NH. The ternary compound appears to be the first crystallographically established ethanol solvate of a lead(II) complex. In the two‐dimensional coordination networks, the cations adopt either a distorted cubic or, in the solvate, an irregular (O6N2)‐octacoordination, the metal centres of the isotypic structures forming close contacts to two (O, N)‐chelating and four κ1O‐bonding anions, whereas in the solvate one of the latter ligands is displaced by an EtOH molecule. In the isotypic structures, the Pb—O distances are systematically longer than the Sr—O distances and the Pb—N bonds shorter than the Sr—N bonds, which correlates with the softer character of Pb2+ as compared to Sr2+. The 6s lone pair on Pb2+ is stereochemically inactive in both lead compounds. Analogies and discrepancies between the layer architectures are discussed in detail, including an evaluation of short C—H···O contacts in terms of weak hydrogen bonding. Two complexes of composition PbA2·2 L, where L is pyridine or 1, 10‐phenanthroline, have been synthesized and characterized by analytical methods.  相似文献   

2.
Polysulfonylamines. CLX. Crystal Structures of Metal Di(methanesulfonyl)amides. 10. The Three‐Dimensional Coordination Polymers M[(CH3SO2)2N], where M is Potassium, Rubidium, Cesium (Isotypic Structures for M = K, Rb) Low‐temperature X‐ray crystal structures are reported for KA (monoclinic, space group P21/c, Z′ = 1), RbA (isotypic and isostructural with KA), and CsA (monoclinic, P21/n, Z′ = 1), where A denotes the anion obtained by deprotonation of the strong nitrogen acid (MeSO2)2NH. In KA and RbA, the anion is distorted into a rare C1 conformation, whereas the standard C2 conformation is retained in the cesium complex. The structures consist of three‐dimensional coordination networks, in which each cation adopts an irregular (O6N)‐heptacoordination by forming close contacts to one (O, N)‐chelating, one (O, O)‐chelating and three κ1O‐bonding ligands; however, the coordination number for Cs+ is effectively increased to 8 by a very short Cs···Cs contact distance of 422.5 pm. The crystal packings of the isotypic compounds KA and RbA display lamellar layer substructures that involve six independent ligand‐metal bonds and comprise an internal cation lamella and peripheral regions built up from anion monolayers; the 3D framework is completed by one independent M—O bond cross‐linking the layer substructures. In contrast, CsA features anion monolayers that intercalate planar zigzag chains of cations (Cs···Cs alternatingly 422.5 and 487.5 pm, Cs···Cs···Cs 135.7°), whereby each chain is surrounded and coordinated by four anion stacks and each anion stack connects two cation chains. All structures exhibit close C—H···A interanion contacts consistent with weak hydrogen bonding.  相似文献   

3.
Polysulfonylamines. CLXVI. Crystal Structures of Metal Di(methanesulfonyl)amides. 15. The Isotypic Crystal Structures of Ammonium and Cesium Dimesylamide: Crystallographic Congruency of Hydrogen Bonds N—H···O/N and Metal‐Ligand Interactions Cs—O/N The ammonium salt NH4[N(SO2CH3)2] and its previously reported cesium analogue Cs[N(SO2CH3)2] are isostructural (monoclinic, space group P21/n, Z = 4, V at —140 °C: 0.761 and 0.832 nm3 respectively). The cesium ion adopts an irregular (O6N)‐heptacoordination by forming close contacts to one (O, N)‐chelating, one (O, O)‐chelating and three κ1O‐bonding anions, whereas in the ammonium‐based structure each of the seven Cs—O/N interactions is perfectly mimicked by an N—H···O/N hydrogen‐bond component. To this effect, three N—H donors are engaged in asymmetric three‐centre bonds, the fourth in a moderately strong and approximately linear two‐centre bond. The crystal packings consist of anion monolayers that intercalate planar zigzag rows of cations propagating around symmetry centres (Cs···Cs alternatingly 422.5 and 487.5 pm, Cs···Cs···Cs 135.7°; N···N alternatingly 397.4 and 474.1 pm, N···N···N 136.1°). Each cation row is surrounded by and bonded to four translation‐generated anion stacks, and each anion stack connects two cation rows. The net effect is that the packings display congruent three‐dimensional networks of metal‐ligand bonds or hydrogen bonds, respectively. Moreover, close C—H···O/N interanion contacts consistent with weak hydrogen bonding are observed in both structures.  相似文献   

4.
Polysulfonylamines. CLXIII. Crystal Structures of Metal Di(methanesulfonyl)amides. 12. The Orthorhombic Double Salt Na2Cs2[(CH3SO2)2N]4·3H2O: A Three‐Dimensional Coordination Polymer Built up from Cesium‐Anion‐Water Layers and Intercalated Sodium Ions The packing arrangement of the three‐dimensional coordination polymer Na2Cs2[(MeSO2)2N]4·3H2O (orthorhombic, space group Pna21, Z′ = 1) is in some respects similar to that of the previously reported sodium‐potassium double salt Na2K2[(MeSO2)2N]4·4H2O (tetragonal, P43212, Z′ = 1/2). In the present structure, four multidentately coordinating independent anions, three independent aquo ligands and two types of cesium cation form monolayer substructures that are associated in pairs to form double layers via a Cs(1)—H2O—Cs(2) motif, thus conferring upon each Cs+ an irregular O8N2 environment drawn from two N, O‐chelating anions, two O, O‐chelating anions and two water molecules. Half of the sodium ions occupy pseudo‐inversion centres situated between the double layers and have an octahedral O6 coordination built up from four anions and two water molecules, whereas the remaining Na+ are intercalated within the double layers in a square‐pyramidal and pseudo‐C2 symmetric O5 environment provided by four anions and the water molecule of the Cs—H2O—Cs motif. The net effect is that each of the four independent anions forms bonds to two Cs+ and two Na+, two independent water molecules are involved in Cs—H2O—Na motifs, and the third water molecule acts as a μ3‐bridging ligand for two Cs+ and one Na+. The crystal cohesion is reinforced by a three‐dimensional network of conventional O—H···O=S and weak C—H···O=S/N hydrogen bonds.  相似文献   

5.
Polysulfonylamines. CLVIII. Crystal Structures of Metal Di(methanesulfonyl)amides. 9. Enhancing Crystal Symmetry by Co‐crystallization: Monoclinic Na[(CH3SO2)2N]·H2O and Tetragonal NaK[(CH3SO2)2N]2·2H2O The three‐dimensional coordination polymers NaA·H2O ( 1 ) and NaKA2·2H2O ( 2 ), derived from the strong NH acid (MeSO2)2NH = HA, have been characterized by single crystal X‐ray diffraction at —95 °C ( 1 : monoclinic, space group C2/c, Z′ = 2; 2 : tetragonal, P43212, Z′ = 1). The results suggest that structures with Z′ > 1 are good candidates for co‐crystallization experiments. Both packings display layer substructures built up from the multidentately coordinating anions, the aquo ligands and two kinds of chemically and/or crystallographically distinct cations, whereas cations of a third type are intercalated between the layers. All anions have the extended standard conformation of this species; 1 contains two pseudo‐C2 symmetric A, 2 one pseudo‐C2 and two crystallographically C2 symmetric A. Details for structure 1 : a) The layer‐forming Na(1) and Na(3) cations are distributed over three distinctly separated planes, Na(1) occupies general positions and has a non‐octahedral O5N environment, Na(3) resides on inversion centres that generate an octahedral O6 coordination; b) one independent A is oriented vertically, the other parallel to the layer plane; c) the intercalated Na(2) ions occupy twofold rotation axes within a single plane and possess a non‐octahedral O6 environment. Details for structure 2 : a) The layer‐forming K(1) and K(2) cations occupy twofold rotation axes within a unique plane and have chemically identically O6N2 coordination polyhedra approximating to hexagonal bipyramids; b) all A are oriented vertically to the layer plane; c) the intercalated sodium ions reside on pseudo‐inversion centres, have an octahedral O6 environment and are distributed over two closely adjacent planes. Owing to the enhanced packing efficiency of the bimetal complex, the vertical layer repeat‐distance is reduced from 1140 pm for 1 to 720 pm for 2 . Each structure exhibits an infinite cation‐water chain that propagates in the direction of the layer stacking and contains the three independent cations.  相似文献   

6.
Polysulfonylamines. CLXV. Crystal Structures of Metal Di(methanesulfonyl)amides. 14. Cs3Ag[(MeSO2)2N]4 and CsAg[(MeSO2)2N]2: A Three‐Dimensional and a Layered Coordination Polymer Containing Bis(dimesylamido‐N)argentate Building Blocks Serendipitous formation pathways and low‐temperature X‐ray structures are reported for the coordination compounds Cs3A2[AgA2] ( 1 ) and Cs[AgA2] ( 2 ), where A represents the pentadentate dimesylamide ligand (MeSO2)2N. Both phases (monoclinic, space group C2/c, Z′ = 1/2) contain inversion‐symmetric bis(dimesylamido‐N)argentate units displaying exactly linear N—Ag—N cores and short, predominantly covalent Ag—N bonds [ 1 : 213.5(2), 2 : 213.35(12) pm]; in each case, the coordination number of the silver ion is extended to 2 + 6 by four internal and two external Ag···O secondary interactions. The three‐dimensional coordination polymer 1 is built up from alternating layer substructures [{Cs(1)}{A}4/2] with Cs(1) lying on twofold rotation axes and [{Cs(2)}2{AgA2}4/4]+ with Cs(2) occupying general positions. Within the substructural layers, both types of cesium cation have approximately planar O4 environments, whereas the final coordination spheres including interlayer bonds are extended to O6 for Cs(1) and to O8N for Cs(2). Compound 2 , in contrast, forms a genuine layer structure. The layers are constructed from Cs+ chains located on twofold rotation axes, alternating with [AgA2] stacks reinforced by Ag···O secondary interactions and weak C—H···O hydrogen bonds; Cs+ is embedded in an O8 environment. Both structures are pervaded by a three‐dimensional C—H···O network.  相似文献   

7.
Stick‐Polysulfonylamines. CLXII. Crystal Structures of Metal Di(methanesulfonyl)amides. 11. The Three‐Dimensional Coordination Polymer K[(CH3SO2)2N] II: A Chiral Structure with Four Independent Formula Units, Pseudo‐Centrosymmetry of the Crystal Packing, and Conformational Isomorphism of the Anion For potassium dimesylamide, K[(CH3SO2)2N] or KA, two monoclinic polymorphs have been isolated from different media at ambient temperature and characterized by single crystal X‐ray diffraction at —100 °C. In the previously reported centrosymmetric structure of KA I (P21/c, Z′ = 1), the anion adopts an extremely rare conformation in point group C1, whereas the chiral structure of KA II (P21, Z′ = 4) displays three independent anions of normal C2 symmetry and one anion substantially distorted to C1. In addition, the independent ions of KA II are pair‐wise related by a pseudo‐inversion centre conferring pseudo‐P21/c symmetry and Z′ = 2 upon the packing. Both dimorphs form three‐dimensional coordination polymers, in which the oxygen and nitrogen atoms of the anions are exhaustively involved in κ1‐ or μ2‐type bonding to either five or six cations, whereby each of the five independent anions develops a different connectivity pattern. The coordination polyhedra of the cations comprise in KA I an O6N environment approximating to a distorted octahedron with twofold occupancy of one coordination site, in KA II two O7 spheres forming distorted monocapped octahedra and two O4N2 spheres of trigonal‐prismatic geometry. In conclusion, the Z′ = 4 structure of KA II exhibits both conformational and coordination isomorphism, whereas the KA I/KA II pair represents a case of simultaneous conformational and coordination dimorphism. Weak C—H···O hydrogen bonds are observed in both structures.  相似文献   

8.
Metal Salts of Benzene‐1, 2‐di(sulfonyl)amine. 9. The Barium Complex [[Ba{C6H4(SO2)2N}2(H2O)22]: A Columnar Coordination Polymer with Lamellar Crystal Packing The title complex, obtained by treating ortho‐benzenedi‐sulfonimide with Ba(OH)2 in aqueous solution, has been characterized by low‐temperature X‐ray diffraction (monoclinic, space group C2/c, Z = 4, Ba2+ on a crystallographic twofold axis). The cation attains a tenfold coordination by accepting bonds from two water molecules, four κ1O‐bonding anions and two (O, N)‐chelating anions. The cation‐anion interactions create columnar strands parallel to the z axis, from which protrude twin stacks of benzo rings in the directions ±x, and water molecules and non‐coordinating sulfonyl oxygen atoms in the directions ±y. Adjacent strands related by translation parallel to y are associated via O(W)—H···O=S hydrogen bonds to form lamellar sandwich layers. The contiguous benzo rings of adjacent layers are markedly interlocked.  相似文献   

9.
Three potassium edta (edta is ethylenediaminetetraacetic acid, H4Y) salts which have different degrees of ionization of the edta anion, namely dipotassium 2‐({2‐[bis(carboxylatomethyl)azaniumyl]ethyl}(carboxylatomethyl)azaniumyl)acetate dihydrate, 2K+·C10H14N2O82−·2H2O, (I), tripotassium 2,2′‐({2‐[bis(carboxylatomethyl)amino]ethyl}ammonio)diacetate dihydrate, 3K+·C10H13N2O83−·2H2O, (II), and tetrapotassium 2,2′,2′′,2′′′‐(ethane‐1,2‐diyldinitrilo)tetraacetate 3.92‐hydrate, 4K+·C10H12N2O84−·3.92H2O, (III), were obtained in crystalline form from water solutions after mixing edta with potassium hydroxide in different molar ratios. In (II), a new mode of coordination of the edta anion to the metal is observed. The HY3− anion contains one deprotonated N atom coordinated to K+ and the second N atom is involved in intramolecular bifurcated N—H...O and N—H...N hydrogen bonds. The overall conformation of the HY3− anions is very similar to that of the Y4− anions in (III), although a slightly different spatial arrangement of the –CH2COO groups in relation to (III) is observed, whereas the H2Y2− anions in (I) adopt a distinctly different geometry. The preferred synclinal conformation of the –NCH2CH2N– moiety was found for all edta anions. In all three crystals, the anions and water molecules are arranged in three‐dimensional networks linked via O—H...O and C—H...O [and N—H...O in (I) and (II)] hydrogen bonds. K...O interactions also contribute to the three‐dimensional polymeric architecture of the salts.  相似文献   

10.
The scandium(III) cations in the structures of pentaaqua(biuret‐κ2O,O′)scandium(III) trichloride monohydrate, [Sc(C2H5N3O2)(H2O)5]Cl3·H2O, (I), and tetrakis(biuret‐κ2O,O′)scandium(III) trinitrate, [Sc(C2H5N3O2)4](NO3)3, (II), are found to adopt very different coordinations with the same biuret ligand. The roles of hydrogen bonding and the counter‐ion in the establishment of the structures are described. In (I), the Sc3+ cation adopts a fairly regular pentagonal bipyramidal coordination geometry arising from one O,O′‐bidentate biuret molecule and five water molecules. A dense network of N—H...Cl, O—H...O and O—H...Cl hydrogen bonds help to establish the packing, resulting in dimeric associations of two cations and two water molecules. In (II), the Sc3+ cation (site symmetry 2) adopts a slightly squashed square‐antiprismatic geometry arising from four O,O′‐bidentate biuret molecules. A network of N—H...O hydrogen bonds help to establish the packing, which features [010] chains of cations. One of the nitrate ions is disordered about an inversion centre. Both structures form three‐dimensional hydrogen‐bond networks.  相似文献   

11.
Polysulfonylamines. CLXIV. Crystal Structures of Metal Di(methanesulfonyl)amides. 13. Dithallium Tris(dimesylamido‐N)argentate: A Two‐Dimensional Coordination Polymer The complex salt Tl2[Ag{N(SO2Me)2}3] (monoclinic, space group P21/n, Z′ = 1) was obtained by serendipity. Its layer structure displays two unprecedented characteristics, viz. one (MeSO2)2N ion that strongly deviates from the C2‐symmetric standard conformation of this species and approximates to mirror symmetry, and a tris(dimesylamido)argentate anion featuring a trigonal‐planar AgN3 core with Ag—N bond lengths of 225.6(6), 226.0(6), 236.3(6) pm and N—Ag—N angles in accordance with VSEPR concepts [149.8(2) vs. 102.8(2) and 107.3(2)°]. The independent thallium ions are coordinated by the complex anions to form monolayer substructures, in which Tl(1) attains an O6 and Tl(2) an O5 environment; the monolayers are associated into bilayers via one independent set of Tl(2)—O bonds that concomitantly raise the coordination number for Tl(2) to six. Both TlO6 polyhedra may be viewed as extremely distorted octahedra reflecting the stereochemical activity of the 6s lone pair of electrons. The two‐dimensional Ag—N/Tl—O bonding system is reinforced by a three‐dimensional network of weak C—H···O hydrogen bonds.  相似文献   

12.
Single crystals of K2Cu5Cl8(OH)4·2H2O were grown using hydrothermal techniques. The compound is monoclinic with a = 11.6424(11), b = 6.5639(4), c = 11.7710(10)Å, β = 91.09(1)°, V = 899.4(2)Å3, space group P21/c, Z = 2. The crystal structure was determined using single crystal X‐ray diffraction data and refined to a residual of R(|F|) = 0.025 for 1208 independent observed reflections with I > 2σ(I). Two out of three crystallographically independent Cu atoms are coordinated to four near hydroxyl groups or chlorine atoms and two more distant Cl atoms, giving an octahedrally Jahn‐Teller distorted (4+2)‐configuration. For the remaining third copper cation a square‐planar coordination can be found. Edge‐sharing of the octahedra results in the formation of kagome‐type sheets parallel to (100). The octahedral layers are decorated on both sides by planar [Cu(OH)2Cl2]‐units around the third Cu atom. The K atoms are located between adjacent sheets and are surrounded by six Cl atoms as well as two water molecules. The coordination polyhedra about the K‐atoms can be described as distorted bicapped trigonal prisms. Additional linkage is provided by intra‐ as well as inter‐layer hydrogen bonds (O—H···Cl, O—H···O).  相似文献   

13.
The crystal structure of the title compound, {[Tm(C8H3O7S)(H2O)5]·1.5C10H8N2·0.5H2O}n, is built up from two [Tm(SIP)(H2O)5] molecules (SIP3− is 5‐sulfonatobenzene‐1,3‐dicarboxylate), three 4,4′‐bipyridyl (bpy) molecules and one solvent water molecule. One of the bpy molecules and the solvent water molecule are located on an inversion centre and a twofold rotation axis, respectively. The TmIII ion coordination is composed of four carboxylate O atoms from two trianionic SIP3− ligands and five coordinated water molecules. The Tm3+ ions are linked by the SIP3− ligands to form a one‐dimensional zigzag chain propagating along the c axis. The chains are linked by interchain O—H...O hydrogen bonds to generate a two‐dimensional layered structure. The bpy molecules are not involved in coordination but are linked by O—H...N hydrogen bonds to form two‐dimensional layers. The two‐dimensional layers are further bridged by the bpy molecules as pillars and the solvent water molecules through hydrogen bonds, giving a three‐dimensional supramolecular structure. π–π stacking interactions between the parallel aromatic rings, arranged in an offset fashion with a face‐to‐face distance of 3.566 (1) Å, are observed in the crystal packing.  相似文献   

14.
The title coordination polymer, {[Ag(C8H7O5)]·H2O}n, is built from Ag+ cations and singly protonated dehydronorcantharidin (SP‐DNC) anions, with a distorted trigonal‐planar geometry at the metal centre. The coordination number of AgI is three (with one Ag—π bond and two Ag—O bonds, one from each of three different SP‐DNC ligands), if only formal Ag–ligand bonds are considered, but can be regarded as five if longer weak Ag...O interactions are also included. The two‐dimensional corrugated‐sheet coordination polymer forms a non‐interpenetrating framework with (4.82) topology. Disordered water molecules are sandwiched between the sheets.  相似文献   

15.
Synthesis, Crystal Structure, and Thermal Decomposition of Mg(H2O)6[B12H12] · 6 H2O By reaction of an aqueous solution of the free acid (H3O)2[B12H12] with MgCO3 and subsequent isothermic evaporation of the resulting solution to dryness, colourless, bead‐shaped single crystals of the dodecahydrate of magnesium dodecahydro closo‐dodecaborate Mg(H2O)6[B12H12] · 6 H2O (cubic, F4132; a = 1643.21(9) pm, Z = 8) emerge. The crystal structure is best described as a NaTl‐type arrangement in which the centers of gravity of the quasi‐icosahedral [B12H12]2— anions (d(B—B) = 178—180 pm, d(B—H) = 109 pm) occupy the positions of Tl while the Mg2+ cations occupy the Na+ positions. A direct coordinative influence of the [B12H12]2— units at the Mg2+ cations is however not noticeable. The latter are octahedrally coordinated by six water molecules forming isolated hexaaqua complex cations [Mg(H2O)6]2+ (d(Mg—O) = 206 pm, 6×). In addition, six “zeolitic” water molecules are located in the crystal structure for the formation of a strong O—Hδ+···δ—O‐hydrogen bridge‐bonding system. The evidence of weak B—Hδ—···δ+H—O‐hydrogen bonds between water molecules and anionic [B12H12]2— clusters is also considered. Investigations on the dodecahydrate Mg[B12H12] · 12 H2O (≡ Mg(H2O)6[B12H12] · 6 H2O) by DTA/TG measurements showed that its dehydration takes place in two steps within a temperature range of 71 and 76 °C as well as at 202 °C, respectively. Thermal treatment eventually leads to the anhydrous magnesium dodecahydro closo‐dodecaborate Mg[B12H12].  相似文献   

16.
In poly[[diaquaoxido[μ3‐trioxidoselenato(2−)]vanadium(IV)] hemihydrate], {[VO(SeO3)(H2O)2]·0.5H2O}n, the octahedral V(H2O)2O4 and pyramidal SeO3 building units are linked by V—O—Se bonds to generate ladder‐like chains propagating along the [010] direction. A network of O—H...O hydrogen bonds helps to consolidate the structure. The O atom of the uncoordinated water molecule lies on a crystallographic twofold axis. The title compound has a similar structure to those of the reported phases [VO(OH)(H2O)(SeO3)]4·2H2O and VO(H2O)2(HPO4)·2H2O.  相似文献   

17.
The structure of barium chlorite hydrate, Ba(ClO2)2·3.5H2O, has been determined by single‐crystal X‐ray analysis at 150 K. The structure is monoclinic, space group C2/c, with Z = 8. It contains layers of Ba2+ cations coordinated by ClO2 anions and water mol­ecules. There are also solvate water mol­ecules involved only in hydrogen bonding of the layers. Three solvate water O atoms are on sites of twofold symmetry, while all other atoms are in general positions. The full coordination environment of the Ba2+ cation consists of ten O atoms belonging to six chlorites and three water mol­ecules, forming a bicapped square antiprism.  相似文献   

18.
The title compound, {[Cd2(C10H12N2O8)(H2O)]·H2O}n, consists of two crystallographically independent CdII cations, one ethylenediaminetetraacetate (edta) tetraanion, one coordinated water molecule and one solvent water molecule. The coordination of one of the Cd atoms, Cd1, is composed of five O atoms and two N atoms from two tetraanionic edta ligands in a distorted pentagonal–bipyramidal coordination geometry. The other Cd atom, Cd2, is six‐coordinated by five carboxylate O atoms from five edta ligands and one water molecule in a distorted octahedral geometry. Two neighbouring Cd1 atoms are bridged by a pair of carboxylate O atoms to form a centrosymmetric [Cd2(edta)2]4− unit located on the inversion centre, which is further extended into a two‐dimensional layered structure through Cd2—O bonds. There are hydrogen bonds between the coordinated water molecules and carboxylate O atoms within the layer. The solvent water molecules occupy the space between the layers and interact with the host layers through O—H...O and C—H...O interactions.  相似文献   

19.
Polysulfonylamines. CXV. Rubidium Di(methanesulfonyl)amide, 18-Crown-6, and Water as Building Blocks of a Three-Dimensional Hydrogen-Bond Network: Preparation and Crystal Structure of [Rb(18-crown-6)(H2O)2{(MeSO2)2N}] · H2O The title complex (orthorhombic, space group P212121, Z = 4, X-ray analysis at –130 °C) was obtained by co-crystallizing equimolar amounts of RbN(SO2Me)2 and 18-crown-6 from water/methanol (1/1). The crown ether displays effective D3d symmetry; the Rb ion is displaced by 99.5(1) pm from the mean plane of the macrocyclic oxygen atoms [Rb–O 290.2(3)–309.7(3) pm] and thus adopts a typical “sunrise coordination”. Two Rb–O contacts from water molecules [295.1(4) and 323.0(4) pm] and a Rb–O contact from the anion [292.0(4) pm], all situated on the opposite side from the crown ether, complete the coordination of the cation. Hydrogen bonding plays a major role in the crystal packing. The complex units, excluding the non-coordinating water molecules, are associated into strands by (H2O) catenation and water…anion hydrogen bonds. The non-coordinating water molecules, located between the parallel strands, cross-link each of them with four adjacent equivalents via water…anion bonds to generate a three-dimensional network.  相似文献   

20.
The characteristic feature of the structure of the title compound, dipotassium bis(sulfito‐κS)mercurate(II) 2.25‐hydrate, is a layered arrangement parallel to (001) where each of the two independent [Hg(SO3)2]2− anions are grouped into centrosymmetric pairs and are surrounded by two K+ cations to give the overall layer composition {K2[Hg(SO3)2]2}2−. The remaining cations and the uncoordinated water molecules are situated between these layers. Within the [Hg(SO3)2]2− anions, the central Hg atoms are twofold coordinated by S atoms, with a mean Hg—S bond length of 2.384 (2) Å. The anions are slightly bent [174.26 (3) and 176.99 (3)°] due to intermolecular O...Hg interactions greater than 2.8 Å. All coordination polyhedra around the K+ cations are considerably distorted, with coordination numbers ranging from six to nine. Although the H atoms of the five water molecules (one with symmetry 2) could not be located, O...O separations between 2.80 and 2.95 Å suggest a system of medium to weak O—H...O hydrogen bonds which help to consolidate the structural set‐up. Differences and similarities between the bis(sulfito‐κS)mercurate(II) anions in the title compound and those in the related salts (NH4)2[Hg(SO3)2] and Na2[Hg(SO3)2]·H2O are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号