首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reaction of NaAlH4 with Primer Silylphosphines and Silylarsines: Synthesis and Crystal Structure of a Cyclic Sodium Phosphanylalanate and a Polycyclic Sodium Arsanylalanate The reaction of sodium aluminium hydride with H2PSiMe3 in the molar ratio 1:4 yields the compound [H2Al{P(SiMe3)2}2Na(dme)2] ( 1 ). Central structural motif of this compound in a four‐membered AlP2Na ring. Surprisingly the phosphorus atoms in the ring wear two exocyclic silylgroups each. From the reaction of NaAlH4 with the primer silylarsine H2AsSiiPr3 in THF the ionic compound 2 can be obtained. In this compound cyclic [(H2Al)3(AsSiiPr3)3]3‐ anions coordinate the sodium counter‐ions by the hydride ligands as well as by the arsenic atoms.  相似文献   

2.
Ligand Stabilized Cyclic and Polycyclic Aluminium Phosphorus and Aluminium Arsenic Compounds The reaction of AlCl3 with Li2AsSiRMe2 (R = CMe2iPr) in a mixture of ether and heptane yields the ether stabilized polycyclic compound [(AlCl)4(AsSiRMe2)4(Et2O)2] ( 4 ) with a ladder shaped Al4As4 core structure. The shape of 4 is mostly similar to the aluminium phosphorus compound [(AlCl)4(PSiiPr3)4(Et2O)2] ( 1 ) described recently [1]. These two compounds 1 and 4 can be cleaved into the cyclic compounds [{AlCl(C5H5N)}2(PSiiPr3)2] ( 3 ) and [{AlCl(NEt3)}2(AsSiRMe2)2] ( 5 ) by reaction with pyridine and NEt3, respectively. The compounds 3 , 4 , and 5 have been characterized by single crystal X‐ray diffraction.  相似文献   

3.
(Ph4P)2[Be2F6]·2CH3CN: Synthesis, IR Spectra, Crystal Structure, and Quantum Chemical Calculations The hexafluorodiberyllate (Ph4P)2[Be2F6]·2CH3CN ( 1 ) was prepared by the reaction of (Ph4P)2[Be2Cl6] with excess silver(I) fluoride in acetonitrile solution. According to the IR spectra and to the X‐ray crystal structure determination, 1 contains isolated [Be2F6]2? ions of symmetry Ci, which is very close to symmetry D2h. 1 crystallizes triclinically in space group with one formula unit per unit cell. Lattice dimensions at 193 K: a = 950.5(2), b = 1016.1(2), c = 1305.2(2) pm, α = 101.04(2)°, β = 110.83(2)°, γ = 96.85(2)°, R1 = 0.0354. DFT (BP86) and ab initio (CCSD(T)) calculations with large basis sets provide the picture of an intrinsically unstable molecule stabilized by solvent and solid state effects.  相似文献   

4.
Bisaminophosphanes – Synthesis, Structure, and Reactivity Different pathways for the synthesis of bis(alkylamino)phosphanes RP(N(H)R′)2 are described. t‐BuP(N(H)‐ Dipp)2 (Dipp = 2,6‐i‐Pr2–C6H3) was structurally characterized by single crystal X‐ray diffraction. The reactivity of the compounds was examplarily investigated using t‐BuP(N(H)t‐Bu)2. Its reaction with Me3Al and R2AlH (R = Me, Et, i‐Bu) in 1 : 1 and 1 : 2 stoichiometrie yield monosubstituted compounds of the type t‐BuP(N(H)t‐Bu)(N(AlR2)t‐Bu).  相似文献   

5.
The First Four‐Membered Al/P Ring formed by three Phosphorus Atoms nd one Aluminium Atom: Synthesis and Crystal Structure of [Cp*Al(P t Bu)3] (AlCp*)4 reacts with (PtBu)3 at 90 °C to form the new cyclic Al/P‐compound 1,2,3‐tris‐t‐butyl‐tri‐phospha‐4‐pentamethylcyclopentadienylaluminetane: [Cp*Al(PtBu)3] ( 1 ). 1 has been characterised by single crystal x‐ray diffraction, 31P{1H}‐NMR spectroscopy as well as mass spectroscopy. It consists of a folded four‐membered AlP3‐ring and differs therefore from all Al/P‐compounds known so far, which always show alternating Al‐P‐positions. 1 crystallises in the orthorhombic spacegroup P212121, the lattice constants are: a = 9.067 pm, b = 16.212 pm, c = 17.449 pm, α = β = γ = 90°.  相似文献   

6.
7.
The first inorganic lead(IV) compound without oxygen, nitrogen or halogen ligands attached to the lead atom was obtained as the potassium salt of the tetraselenidoplumbate(IV) anion [PbIVSe4]4?. It is stable under inert conditions which may enable the transfer of the chemistry of chalcogenidogermanate(IV) or chalcogenidostannate(IV) materials, to the lead homologues.  相似文献   

8.
The Hydroalumination of 1,1,4,4‐Tetramethyl‐2,3‐diazabutadiene by Dialkylaluminium Hydrides – Synthesis of Dialkylaluminium Hydrazonides 1,1,4,4‐Tetramethyl‐2,3‐diazabutadiene reacted with dimethylaluminium hydride by hydroalumination of only one C=N double bond. The hydrazone derivative [Me2Al–N(CHMe2)–N=CMe2]2 ( 1 ) was formed which gave a dimer possessing a six‐membered Al2N4 heterocycle. The hydroalumination of both C=N double bonds was not observed. Also an excess of di(tert‐butyl)‐ or bis(trimethylsilylmethyl)aluminium hydride afforded only the product of a single hydroalumination step, a second dialkylaluminium hydride molecule was attached via a coordinative interaction between its central aluminium atom and the nitrogen atom of the C=N double bond and in addition via a 3 c‐2 e Al–H–Al bond. Compounds [(Me3C)2Al][(Me3C)2AlH]N(CHMe2)NCMe2 ( 2 ) and [(Me3SiCH2)2Al][(Me3SiCH2)2AlH]N(CHMe2)NCMe2 ( 3 ) were formed which have five‐membered Al2N2H heterocycles. Thermolysis of 2 gave by C–H activation compound [(Me3C)2Al]2[CH2C(Me)=N–]2 ( 4 ) in trace amounts which possesses two anellated AlN2C2 rings with a common N–N bond. In contrast, the thermal decomposition of 3 yielded by the cleavage of the N–N bond a dimeric dialkylaluminium methylideneamide ( 5 ) which has two intact C=N double bonds. Up to now our attempts to insert a C=N double bond into an Al–C bond remained unsuccessful, and only the formation of an adduct [(Me3C)3Al(–N=CMe2)2] ( 6 ) was observed upon treatment of tri(tert‐butyl)aluminium with the diazabutadiene derivative.  相似文献   

9.
10.
11.
Synthesis and Structures of Sr6P8 Polyhedra in Mixed Phosphanides/Phosphandiides of Strontium The strontiation of H2PSiiPr3 ( 1 ) with (THF)2Sr[N(SiMe3)2]2 in THF yields colorless tetrakis(tetrahydrofuran‐O)strontium bis(triisopropylsilylphosphanide) ( 3 ). The central alkaline earth metal atom has an octahedral environment with the phosphanide ligands in trans position. The homometalation in toluene leads to the elimination of 1 and THF. Cooling of this solution gives crystals of colorless tetrakis(tetrahydrofuran‐O)hexastrontium‐tetrakis(triisopropylsilylphosphanide)‐tetrakis(triisopropylsilylphosphandiide) ( 4 ). The equimolar reaction of H2PSitBu3 ( 2 ) with (THF)2Sr[N(SiMe3)2]2 in toluene yields in the first step heteroleptic dimeric {(Me3Si)2NSr(THF)2[P(H)SitBu3]}2 ( 5 )2. This compounds monomerizes in THF to (Me3Si)2N–Sr(THF)4[P(H)SitBu3] ( 6 ), which forms an equilibrium with the homoleptic dismutation products (THF)2Sr[N(SiMe3)2]2 and (THF)4Sr[P(H)SitBu3]2 ( 7 ). Compound ( 5 )2 undergoes a intramolecular strontiation and bis(tetrahydrofuran‐O)hexastrontium‐tetrakis[tri(tert‐butyl)silylphosphanide]‐tetrakis[tri(tert‐butyl)silylphosphandiide] ( 8 ) is isolated. The central Sr6P8‐polyhedra of 4 and 8 are very similar.  相似文献   

12.
Molecular Compounds containing SiAl4, SiAl3, and GeAl4 Units: Sythesis and Structure of Si(AlCl2 · OEt2)4, Ge(AlCl2 · OEt2)4, and HSi(Cp*AlBr)3 In the scope of our investigations of the reactivity and the potential for synthesis of solutions of AlI halides we performed reactions between these solutions and SiCp or GeCp, respectively. From these reactions we could isolate an unusual cluster with a central Al14Si unit, described elsewhere, and the compounds Si(AlCl2 · OEt2)4, Ge(AlCl2 · OEt2)4, and HSi(Cp*AlBr)3, which will be presented and discussed here. In these species the Si respectively the Ge atoms are connected to 4 respectively 3 Al atoms. This bonding results in strong negative polarized Si/Ge centres. The change of the polarization with respect to “normal” Si–R or Ge–R linking leads to a drastic weakening of the Si–R respectively the Ge–R bonds.  相似文献   

13.
A New Phosphorus Sulfide with Adamantane Structure: δ‐P4S7 By sulfur abstraction from α‐P4S9/P4S10 with triphenylphosphine a new phosphorus sulfide δ‐P4S7 with adamantane skeleton and an additional sulfur in exo‐position was identified in CS2‐solution by 31P‐NMR spectroscopy. Product distribution and 31P‐NMR parameter are given.  相似文献   

14.
The Reaction of SeCl4 with Transition Metal Tetrachlorides. Synthesis and Crystal Structures of (SeCl3)2MCl6 with M = Zr, Hf, Mo, Re The transition metal tetrachlorides ZrCl4, HfCl4 and MoCl4 react with SeCl4 in closed ampoules at temperatures of 140°C to (SeCl3)2MCl6 (M = Zr, Hf, Mo) which are all isotypic and crystallize in the (SeCl3)2ReCl6 structure type (orthorhombic, Fdd2, Z = 8, lattice constants for M = Zr: a = 1165.7(1)pm, b = 1287.2(2)pm, c = 2180.2(2)pm; for M = Hf: a = 1162.9(2)pm, b = 1285.0(2)pm, c = 2178.2(3)pm; for M = Mo: a = 1153.8(1)pm, b = 1267.7(1)pm, c = 2147.4(2)pm). The Cl? ions form a hexagonal closest packing with one fourth of the octahedral holes filled by Se4+ and M4+ in an ordered way. The MCl6 octahedra are regular, the SeCl6 octahedra are distorted with 3 short and 3 long Se? Cl bonds (mean 215 pm and 287 pm). The structures can thus be regarded as built of SeCl3+ and MCl62? ions. Magnetic susceptibility measurements show for M = Zr the expected diamagnetic behavior, for M = Mo and Re paramagnetic behavior according to the Curie-Weiss law with magnetic moments of 2.5 B. M. for M = Mo and 3.7 B. M. for M = Re corresponding to 2 and 3 unpaired electrons respectivly.  相似文献   

15.
Synthesis and Crystal Structures of 1,1,3,3‐Tetramethylimidazolinium Dichloride and 1,1,4‐Trimethylpiperazinium Chloride Single crystals of 1,1,3,3‐tetramethylimidazolinium dichloride ( 1 ) and 1,1,4‐trimethylpiperazinium chloride ( 2 ) were obtained by reaction of CH2Cl2 with tetramethylethylenediamine (TMEDA) and NNN′N″N″‐pentamethyldiethylenetriamine (PMDETA), respectively. Both compounds are characterized by single crystal X‐ray diffraction and by IR spectroscopy. 1: [C7H18N2]Cl2, space group P21/c, Z = 4, lattice dimensions at 193(2) K: a = 821.97(11), b = 1130.38(8), c = 1143.08(13) pm, β = 100.348(15)°, R1 = 0.0271. The C7N2 heterocyclic ring has envelope conformation like other salts with this dication. 2: [C7H17N2]Cl, space group P212121, Z = 4, lattice dimensions at 100(2) K: a = 1030.37(8), b = 1036.55(6), c = 831.39(4) pm, R1 = 0.0180. Although the heterocyclic mono‐cation is without site symmetry in the crystal, its molecular symmetry is close to Cs, forming chair conformation of the C4N2 six‐membered ring.  相似文献   

16.
Synthesis and Characterization of New Cyclic and Cage‐like Indium — Phosphorus and Indium — Arsenic Compounds The reaction of InEt3 with H2ESiiPr3 initially yields the cyclic compound [Et2InP(H)SiiPr3]2 ( 2 ). 2 appears as a mixture of cis and trans isomers and has been characterized by 31P‐NMR spectroscopy, IR spectroscopy, and mass spectrometry. 2 decomposes in solution under elimination of ethane during a few days to form [EtInPSiiPr3]4 ( 3 ) with a cage‐like structure. The analogous arsenic compound [EtInAsSiiPr3]4 ( 4 ) can be prepared by reaction of InEt3 with H2AsSiiPr3. Central structural motif of 3 and 4 is an In4E4 heterocubane like structure (E = P, As), whereas the reaction of InEt3 with H2PSiMe2Thex (Thex = CMe2iPr) yields [EtInPSiMe2Thex]6 ( 5 ) with a hexagonal prismatic structure.  相似文献   

17.
31P MAS-NMR of Phosphorus Oxide Sulfides — Experimental Determination and Quantumchemical Calculation of Chemical Shift Tensors By high resolution solid state 31P MAS NMR and analysis of spinning sidebands the principal values of the chemical shift tensors in the series P4O6Sn with n = 0–4 have been determined. The orientations of the corresponding principal axes within the molecules have been derived. All magnetic shielding tensors show axial symmetry within the limits of experimental error. Thus the orientation of the shielding tensor within the molecules can be deduced indirectly. This information is usually not accessible for polycrystalline samples. The principal values of the tensor of the trivalent phosphorus atoms in P4O6S seem to deviate considerably from those of the other compounds with respect to anisotropy and axiality. The reason is a dynamic effect: the rotation of the molecule about the PS bond. All experimental results are confirmed by ab-initio calculations using the IGLO method.  相似文献   

18.
Lewis-Acid-Base-Reactions of Gold Trihalides with Bismuth Trihalides – Synthesis and Structures of AuBiX6 (X ? CI, Br) Gold trihalides AuX3 (X ? Cl, Br) react with bismuth trihalides in sealed glass ampoules to the 1 : 1 adducts AuBiX6 (X ? Cl, Br). AuBiCl6 is obtained by a chemical transport reaction at 220°C, whereas AuBiBr6 was synthesized by solvothermal reaction in SiBr4 at 150°C. Both compounds crystallize triclinic, space group P1 , Z = 4. AuBiCl6; a = 698.3(4) pm; b = 1009.3(5) pm; c = 1381(1) pm; α = 104.98(5)°; β = 94.73(5)°; γ = 110.06(3)°; V = 867(1) · 106 pm3. AuBiBr6: a = 735.7(4) pm; b = 1055.7(5) pm; c = 1445(1) pm; α =104.88(5)°; β = 94.25(5)°; γ = 110.18(4)°; V =1001(1) ·106pm3. The structures are build formally of square-planar [AuX4]? and chains of edge-connected ([BiX4/2]+)n units. Since each Bi ion is surrounded by eight halogenide ions in a square-antiprismatic form, the structure can alternatively be described as consisting of chains of edge sharing ([BiX4X4/2]3?)n antiprisms connected by Au3+ ions.  相似文献   

19.
Synthesis, Complex Formation, and Crystal Structures of Cyclotriphosphazenes with N,N,N′,N′‐Tetramethylguanidine Groups The reactions of monochloropentaphenoxycyclotriphosphazene and hexachlorocyclotriphosphazene with N,N,N′,N′‐tetramethylguanidine yield the mono and tetra substituted products 2‐(N,N,N′,N′‐tetramethylguanidine)‐2,4,4,6,6‐pentaphenoxy‐2 λ5,4 λ5,6 λ5‐cyclotriphosphaza‐1,3,5‐trien ( 1 ) and 2,2‐dichlor‐4,4,6,6‐tetra‐(N,N,N′,N′‐tetramethylguanidine‐2 λ5,4 λ5,6 λ5‐cyclotriphosphaza‐1,3,5‐trien ( 2 ) respectively; no hexa functionalized product could be obtained, even with high excess of the nucleophile. Electron release from the exocyclic amino substituent reduces the acceptor ability of the phosphorus atoms. Reactions of ( 2 ) with copper(II) chloride and palladium(II) bis(acetonitrilo)dichloride yield metal complexes with a ligand : metal ratio of 1 : 2. The X‐ray structure analyses of N3P3Cl2(NC(N(CH3)2)2)4 · 2 CuCl2 ( 2 a ) and N3P3Cl2(NC(N(CH3)2)2)4 · 2 PdCl2 ( 2 b ) show that each metal atom is coordinated by two imino nitrogen atoms in geminal positions and two chloride atoms in a square planar arrangement.  相似文献   

20.
The solvothermal reaction of MnCl2 · 4H2O or CoCl2 · 6H2O with tris(4‐carboxyphenyl)‐phosphine oxide (H3TPO), in DMF orDMA resulted in the four coordination polymers [M3(tpo)2(dmf)(H2O)2]( 1 : M = Mn; 2 : M = Co), (NMe2H2)[Mn3Cl(HCO2)(htpo)(tpo)(H2O)] ( 3 ) and (NMe2H2)[Mn3(tpo)2(OAc)] ( 4 ). Structural characterization by X‐ray crystallography revealed that 1 – 4 form 3‐periodical infinite networks; after synthesis solvent molecules occupy the framework pores. The topologies of the networks in 1 , 2 and 3 are unprecedented in literature and are systematically characterized. Furthermore, these topologies could be derived from hexagonal close packing ( 1 , 2 ) and cubic close packing ( 3 ), respectively.Compounds 1 , 2 and 4 were synthesized as pure crystalline materials, their thermal behaviour was examined by TG/DTA measurements and temperature dependent PXRD. 1 , 2 and 4 show remarkable thermal stability with decomposition temperatures between 450 and 500 °C. Temperature dependent PXRD measurements of compounds 1 and 2 reveal a structural transition at 260 °C, framework 4 loses its crystallinity at 210 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号