共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of cis‐(n‐Bu4N)2[PtX2(ox)2], X = Cl, Br, I By treatment of [PtCl6]2— with C2O42— (ox2—) in water cis‐(n‐Bu4N)2[PtCl2(ox)2] ( 1 ) is formed which has been isolated by ion exchange chromatography on diethylaminoethyl cellulose. Exposure of trans‐(n‐Bu4N)2[PtX2(ox)2], X = Br and I, in dichloromethane yields cis‐(n‐Bu4N)2[PtBr2(ox)2] ( 2 ) and cis‐(n‐Bu4N)2[PtI2(ox)2] ( 3 ). The crystal structure of 3 (monoclinic, space group P21/c, a = 19.132(1), b = 14.377(1), c = 18.099(1) Å, ß = 113.734(8)°, Z = 4) reveals, that the compound crystallizes as a racemic mixture with C2 point symmetrical complex anions. The bond lengths in both I′‐Pt‐O• axes are Pt‐I′ = 2.599 and Pt‐O• = 2.052 and in the O—Pt—O axis Pt—O = 2.016 Å. The oxalato ligands are nearly plane with O—C—C—O torsion angles of 0.2—3.6°. In the vibrational spectra the PtX′ stretching vibrations are observed at 362 and 365 ( 1 ), 231 and 240 ( 2 ) and 172 and 183 cm—1 ( 3 ). The PtO• and PtO stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 400—800 cm—1. Based on the molecular parameters of the X‐ray determination ( 3 ) and estimated data ( 1 , 2 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtCl′) = 2.35, fd(PtBr′) = 2.20, fd(PtI′) = 1.81 and fd(PtO•) = 2.57 ( 1 ), 2.42 ( 2 ) and 2.15 ( 3 ) and fd(PtO) = 2.65 mdyn/Å. Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 6438.8 ( 1 ), 5988.8 ( 2 ) and 4917.3 ppm ( 3 ). 相似文献
2.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of cis‐(n‐Bu4N)2[Pt(ECN)2(ox)2], E = S, Se By exposure of trans‐(n‐Bu4N)2[Pt(ECN)2(ox)2], E = S and Se, in dichloromethane cis‐(n‐Bu4N)2[Pt(SCN)2(ox)2] ( 1 ) and cis‐(n‐Bu4N)2[Pt(SeCN)2(ox)2] ( 2 ) are formed. The crystal structure of 1 (triclinic, space group P1¯, a = 10.789(1), b = 11.906(1), c = 18.580(1)Å, α = 85.619(10), β = 85.272(10), γ = 75.173(10)°, Z = 2) reveals, that the compound crystallizes as a racemic mixture with C2 point symmetrical complex anions. The bond lengths in both S′‐Pt‐O˙ axes are Pt‐S′ = 2.321 and Pt‐O˙ = 2.048 and in the O‐Pt‐O axis Pt‐O = 2.007Å. The oxalato ligands are nearly plane with O‐C‐C‐O torsion angles of 1.4 — 3.9°. The via S′ bound linear thiocyanate groups are coordinated with Pt‐S′‐C angles of 102.6°. In the vibrational spectra the PtE′ stretching vibrations are observed at 327 — 330 ( 1 ) and 217 — 231 cm—1 ( 2 ). The PtO˙ and PtO stretching vibrations are coupled with internal vibrations of the oxalato ligands and appear in the range of 400 — 800 cm—1. Based on the molecular parameters of the X‐ray determination ( 1 ) and estimated data ( 2 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS′) = 2.08, fd(PtSe′) = 1.78, fd(PtO˙) = 2.45 ( 1 ) and 2.27 ( 2 ) and fd(PtO) = 2.65 ( 1 ) and 2.60 mdyn/Å ( 2 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 4925.9 ( 1 ), 4783.0 ( 2 ) and δ(77Se) = 161.7 ppm with the coupling constant 1J(SePt) = 366.2 Hz. 相似文献
3.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of (n‐Bu4N)2[PtX4(ox)], X = Cl, Br By oxidation of (n‐Bu4N)2[PtX2(ox)], X = Cl, Br, with Cl2 or Br2 in dichloromethane (n‐Bu4N)2[PtCl4(ox)] ( 1 ) and (n‐Bu4N)2[PtBr4(ox)] ( 2 ) are formed. The crystal structure of [(C5H5N)2CH2][PtCl4(ox)] (monoclinic, space group C2/m, a = 15.562(1), b = 13.779(1), c = 10.168(1)Å, ß = 128.099(9)°, Z = 4) reveals complex anions with nearly C2v point symmetry. The bond lengths in the Cl′‐Pt‐O˙ axes are Pt‐Cl′ = 2.287 and Pt‐O˙ = 2.048 and in the Cl‐Pt‐Cl axis Pt‐Cl = 2.314Å. The oxalato ligand is nearly plane with an O‐C‐C‐O torsion angle of 0.5°. In the vibrational spectra the PtX stretching vibrations are observed at 328 and 353 ( 1 ) and 201 and 212 cm—1 ( 2 ). The PtX′ modes appear at 360 and 343 ( 1 ) and 227 and 238 cm—1 ( 2 ). The PtO˙ stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 400—800 cm—1. Based on the molecular parameters of the X‐ray determination ( 1 ) and estimated data ( 2 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtCl) = 2.08, fd(PtCl′) = 2.29, fd(PtBr) = 1.56, fd(PtBr′) = 2.02 and fd(PtO˙) = 2.46 ( 1 ) and 2.35 mdyn/Å ( 2 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 5623.0 ( 1 ) and 4536.1 ( 2 ). 相似文献
4.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of trans ‐( n ‐Bu4N)4[Pt(ECN)2(ox)2], E = S, Se By reaction of (n‐Bu4N)2[Pt(ox)2] with (SCN)2 and (SeCN)2 in dichloromethane trans‐(n‐Bu4N)2[Pt(SCN)2(ox)2] ( 1 ) und trans‐(n‐Bu4N)2[Pt(SeCN)2(ox)2] ( 2 ) are formed. The crystal structures of 1 (triclinic, space group P1, a = 10.219(2), b = 11.329(2), c = 12.010(3) Å, α = 114.108(15), β = 104.797(20), γ = 102.232(20)°, Z = 1) and 2 (triclinic, space group P1, a = 10.288(1), b = 11.332(1), c = 12.048(1) Å, α = 114.391(9), β = 103.071(10), γ = 102.466(12)°, Z = 1) reveal, that the compounds crystallize isotypically with centrosymmetric complex anions. The bond lengths are Pt–S = 2.357, Pt–Se = 2.480 and Pt–O = 2.011 ( 1 ) und 2.006 Å ( 2 ). The oxalato ligands are nearly plane with O–C–C–O torsion angles of 1.7–3.6°. The via S or Se coordinated linear groups are inclined between both oxalato ligands with Pt–E–C angles of 100.4 (E = S) and 97.4° (Se). In the vibrational spectra the PtE stretching vibrations are observed at 299–314 ( 1 ) and 189–200 cm–1 ( 2 ). The PtO stretching vibrations are coupled with internal vibrations of the oxalato ligands and appear in the range of 400–800 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS) = 1.75, fd(PtSe) = 1.35 and fd(PtO) = 2.77 mdyn/Å. The NMR shifts are δ(195Pt) = 5435.2 ( 1 ), 5373.7 ( 2 ) and δ(77Se) = 353.2 ppm with the coupling constant 1J(SePt) = 37.4 Hz. 相似文献
5.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of [PtX2ox]2−, X = Cl, Br By treatment of [PtX4]2— (X = Cl, Br) with C2O42— (ox2—) in water [PtCl2ox]2— and [PtBr2ox]2— are formed which have been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The crystal structures of [(C5H5N)2CH2][PtCl2ox]·2H2O ( 1 ) (orthorhombic, space group Pbca, a = 18.451(1), b = 18.256(1), c = 19.913(1)Å, Z = 16) and [(C5H5N)2CH2][PtBr2ox] ( 2 ) (monoclinic, space group P21/c, a = 7.249(1), b = 10.180(1), c = 21.376(1)Å, β = 93.415(9)°, Z = 4) reveal nearly planar complex anions with C2v point symmetry. The bond lengths are Pt‐Cl = 2.286, Pt‐Br = 2.405 und Pt‐O = 2.016 ( 1 ) und 2.030Å ( 2 ). In the vibrational spectra the PtX stretching vibrations are observed at 335 and 336 ( 1 ) and 219 and 231 cm—1 ( 2 ). The PtO stretching vibrations are coupled with internal modes of the oxalato ligands and appear in the range of 350 — 800 cm—1. Using the molecular parameters of the X‐Ray determinations the IR and Raman spectra of the (n‐Bu4N) salts are assigned by normal coordinate analysis. The valence force constants are fd(PtCl) = 1.97, fd(PtBr) = 1.78 and fd(PtO) = 2.48 ( 1 ) and 2.38 mdyn/Å ( 2 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 3603.9 ( 1 ) and 3318.1 ppm ( 2 ). 相似文献
6.
Crystal Structures, Spectroscopic Analysis, and Normal Coordinate Analysis of ( n ‐Bu4N)2[M(ECN)4] (M = Pd, Pt; E = S, Se) The reaction of (NH4)2[PdCl4] or K2[PtCl4] with KSCN or KSeCN in aqueous solutions yields the complex anions [Pd(SCN)4]2–, [Pt(SCN)4]2– and [Pt(SeCN)4]2–, which are converted into (n‐Bu4N) salts with (n‐Bu4N)HSO4. (n‐Bu4N)2[Pd(SeCN)4] is formed by treatment of (n‐Bu4N)2[PdCl4] with (n‐Bu4N)SeCN in acetone. X‐ray structure determinations on single crystals of (n‐Bu4N)2[Pd(SCN)4] (monoclinic, space group P21/n, a = 13.088(3), b = 12.481(2), c = 13.574(3) Å, β = 91.494(15)°, Z = 2), (n‐Bu4N)2[Pd(SeCN)4] (monoclinic, space group P21/n, a = 13.171(2), b = 12.644(2), c = 13.560(2) Å, β = 91.430(11)°, Z = 2) and (n‐Bu4N)2[Pt(SeCN)4] (monoclinic, space group P21/n, a = 13.167(2), b = 12.641(1), c = 13.563(2) Å, β = 91.516(18)°, Z = 2) reveal, that the compounds crystallize isotypically and the complex anions are centrosymmetric and approximate planar. In the Raman spectra the metal ligand stretching modes of (n‐Bu4N)2[Pd(SCN)4] ( 1 ) and (n‐Bu4N)2[Pt(SCN)4] ( 3 ) are observed in the range of 260–303 cm–1 and of (n‐Bu4N)2[Pd(SeCN)4] ( 2 ) and (n‐Bu4N)2[Pt(SeCN)4] ( 4 ) in the range of 171–195 cm–1. The IR and Raman spectra are assigned by normal coordinate analysis using the molecular parameters of the X‐ray determination. The valence force constants are fd(PdS) = 1.17, fd(PdSe) = 1.17, fd(PtS) = 1.44 and fd(PtSe) = 1.42 mdyn/Å. The 77Se NMR resonances are 23 for 2 , –3 for 4 and the 195Pt NMR resonances 549 for 3 and 130 ppm for 4 . 相似文献
7.
Fluorine Complexes of Platinum(II): Synthesis, NMR and Vibrational Spectra of Tetrafluoroplatinate(II) and Difluorooxalatoplatinate(II) From the platinum(IV) compounds (n‐Bu4N)2[PtF4(ox)] und cis‐(n‐Bu4N)2[PtF2(ox)2] on exposure to ultraviolet light at —196 °C the new platinum(II) fluorine complexes (n‐Bu4N)2[PtF4] ( 1 ) and (n‐Bu4N)2[PtF2(ox)] ( 2 ) are formed by elimination of a single oxalate ligand. With the synthesis of 1 the series of the tetra halogeno platinates(II) is completed now. With Cs+ and bis‐(triphenylphosphine)iminium(PNP+) as cations tetrafluoroplatinate(II) can be precipitated as pale yellow salts. Under exclusion of air all compounds are stable at —30 °C for several days, but they decompose and become black at room temperature in air within some hours. The infrared spectrum (60 K) of 1 exhibits the antisymmetric PtF stretching vibration at 515 and two deformation vibrations at 255 and 230 cm—1. In the Raman spectrum (293 K) of (PNP)2[PtF4] the symmetric PtF stretching vibrations appear at 595 and 565 cm—1. The calculated valence force constant is fd(PtF) = 3.09 mdyn/Å. The NMR shifts are δ(195Pt) = 6592 ( 1 ) and 5099 ( 2 ) and δ(19F) = —428 ( 1 ) and —393 ppm ( 2 ) with the coupling constants 1J(PtF) = 1747 ( 1 ) and 1385 Hz ( 2 ). 相似文献
8.
Synthesis, Crystal Structures, and Vibrational Spectra of [Pt(N3)6]2– and [Pt(N3)Cl5]2–, 195Pt and 15N NMR Spectra of [Pt(N3)nCl6–n]2– and [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 By ligand exchange of [PtCl6]2– with sodium azide mixed complexes of the series [Pt(N3)nCl6–n]2– and with 15N‐labelled sodium azide (Na15NN2) mixtures of the isotopomeres [Pt(15NN2)n(N215N)6–n]2–, n = 0–6 and the pair [Pt(15NN2)Cl5]2–/[Pt(N215N)Cl5]2– are formed. X‐ray structure determinations on single crystals of (Ph4P)2[Pt(N3)6] ( 1 ) (triclinic, space group P1, a = 10.175(1), b = 10.516(1), c = 12.380(2) Å, α = 87.822(9), β = 73.822(9), γ = 67.987(8)°, Z = 1) and (Ph4As)2[Pt(N3)Cl5] · HCON(CH3)2 ( 2 ) (triclinic, space group P1, a = 10.068(2), b = 11.001(2), c = 23.658(5) Å, α = 101.196(14), β = 93.977(15), γ = 101.484(13)°, Z = 2) have been performed. The bond lengths are Pt–N = 2.088 ( 1 ), 2.105 ( 2 ) and Pt–Cl = 2.318 Å ( 2 ). The approximate linear azido ligands with Nα–Nβ–Nγ‐angles = 173.5–174.6° are bonded with Pt–Nα–Nβ‐angles = 116.4–121.0°. In the vibrational spectra the PtCl stretching vibrations of (n‐Bu4N)2[Pt(N3)Cl5] are observed at 318–345, the PtN stretching modes of (n‐Bu4N)2[Pt(N3)6] at 401–428 and of (n‐Bu4N)2[Pt(N3)Cl5] at 408–413 cm–1. The mixtures (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 and (n‐Bu4N)2[Pt(15NN2)Cl5]/(n‐Bu4N)2[Pt(N215N)Cl5] exhibit 15N‐isotopic shifts up to 20 cm–1. Based on the molecular parameters of the X‐ray determinations the vibrational spectra are assigned by normal coordinate analysis. The average valence force constants are fd(PtCl) = 1.93, fd(PtNα) = 2.38 and fd(NαNβ, NβNγ) = 12.39 mdyn/Å. In the 195Pt NMR spectrum of [Pt(N3)nCl6–n]2–, n = 0–6 downfield shifts with the increasing number of azido ligands are observed in the range 4766–5067 ppm. The 15N NMR spectrum of (n‐Bu4N)2[Pt(15NN2)n(N215N)6–n], n = 0–6 exhibits by 15N–195Pt coupling a pseudotriplett at –307.5 ppm. Due to the isotopomeres n = 0–5 for terminal 15N six well‐resolved signals with distances of 0.03 ppm are observed in the low field region at –201 to –199 ppm. 相似文献
9.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of ( n ‐Bu4N)2[Os(NCS)6] and ( n ‐Bu4N)3[Os(NCS)6] By tempering the solid mixture of the linkage isomers (n‐Bu4N)3[Os(NCS)n(SCN)6–n] n = 0–5 for a longer time at temperatures increasing from 60 to 140 °C the homoleptic (n‐Bu4N)3[Os(NCS)6] is formed, which on oxidation with (NH4)2[Ce(NO3)6] in acetone yields the corresponding OsIV complex (n‐Bu4N)2[Os(NCS)6]. X‐ray structure determinations on single crystals of (n‐Bu4N)2[Os(NCS)6] (1) (triclinic, space group P 1, a = 12.596(5), b = 12.666(5), c = 16.026(5) Å, α = 88.063(5), β = 80.439(5), γ = 88.637(5)°, Z = 2) and (n‐Bu4N)3[Os(NCS)6] ( 2 ) (cubic, space group Pa 3, a = 24.349(4) Å, Z = 8) have been performed. The nearly linear thiocyanate groups are coordinated with Os–N–C angles of 172.3–177.7°. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constant fd(OsN) is 2.3 ( 1 ) and 2.10 mdyn/Å ( 2 ). 相似文献
10.
Synthesis, Crystal Structures, and Vibrational Spectra of trans ‐[Pt(N3)4(ECN)2]2–, E = S, Se By oxidative addition to (n‐Bu4N)2[Pt(N3)4] with dirhodane in dichloromethane trans‐(n‐Bu4N)2[Pt(N3)4(SCN)2] and by ligand exchange of trans(n‐Bu4N)2[Pt(N3)4I2] with Pb(SeCN)2 trans‐(n‐Bu4N)2[Pt(N3)4(SeCN)2] are formed. X‐ray structure determinations on single crystals of trans‐(Ph4P)2[Pt(N3)4(SCN)2] (triclinic, space group P 1, a = 10.309(3), b = 11.228(2), c = 11.967(2) Å, α = 87.267(13), β = 75.809(16), γ = 65.312(17)°, Z = 1) and trans‐(Ph4P)2[Pt(N3)4(SeCN)2] (triclinic, space group P 1, a = 9.1620(10), b = 10.8520(10), c = 12.455(2) Å, α = 90.817(10), β = 102.172(10), γ = 92.994(9)°, Z = 1) reveal, that the compounds crystallize isotypically with octahedral centrosymmetric complex anions. The bond lengths are Pt–S = 2.337, Pt–Se = 2.490 and Pt–N = 2.083 (S), 2.053 Å (Se). The approximate linear Azidoligands with Nα–Nβ–Nγ‐angles = 172,1–175,0° are bonded with Pt–Nα–Nβ‐angles = 116,7–120,5°. In the vibrational spectra the platinum chalcogen stretching vibrations of trans‐(n‐Bu4N)2[Pt(N3)4(ECN)2] are observed at 296 (E = S) and in the range of 186–203 cm–1 (Se). The platinum azide stretching modes of the complex salts are in the range of 402–425 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS) = 1.64, fd(PtSe) = 1.36, fd(PtNα) = 2.33 (S), 2.40 (Se) and fd(NαNβ, NβNγ) = 12.43 (S), 12.40 mdyn/Å (Se). 相似文献
11.
Synthesis, Crystal Structures, and Vibrational Spectra of trans ‐[Pt(N3)4X2]2–, X = Cl, Br, I By oxidative addition to (n‐Bu4N)2[Pt(N3)4] with the elemental halogens in dichloromethane trans‐(n‐Bu4N)2[Pt(N3)4X2], X = Cl, Br, I are formed. X‐ray structure determinations on single crystals of trans‐(Ph4P)2[Pt(N3)4Cl2] (triclinic, space group P1, a = 10.352(1), b = 10.438(2), c = 11.890(2) Å, α = 91.808(12), β = 100.676(12), γ = 113.980(10)°, Z = 1), trans‐(Ph4P)2[Pt(N3)4Br2] (triclinic, space group P1, a = 10.336(1), b = 10.536(1), c = 12.119(2) Å, α = 91.762(12), β = 101.135(12), γ = 112.867(10)°, Z = 1) and trans‐(Ph4P)2[Pt(N3)4I2] (triclinic, space group P1, a = 10.186(2), b = 10.506(2), c = 12.219(2) Å, α = 91.847(16), β = 101.385(14), γ = 111.965(18)°, Z = 1) reveal, that the compounds crystallize isotypically with octahedral centrosymmetric complex anions. The bond lengths are Pt–Cl = 2.324, Pt–Br = 2.472, Pt–I = 2.619 and Pt–N = 2.052–2.122 Å. The approximate linear Azidoligands with Nα–Nβ–Nγ‐angles = 172.1–176.8° are bonded with Pt–Nα–Nβ‐angles = 116.2–121.9°. In the vibrational spectra the platinum halogen stretching vibrations of trans‐(n‐Bu4N)2[Pt(N3)4X2] are observed in the range of 327–337 (X = Cl), at 202 (Br) and in the range of 145–165 cm–1 (I), respectively. The platinum azide stretching modes of the three complex salts are in the range of 401–421 cm–1. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtCl) = 1.90, fd(PtBr) = 1.64, fd(PtI) = 1.22, fd(PtNα) = 2.20–2.27 and fd(NαNβ, NβNγ) = 12.44 mdyn/Å. 相似文献
12.
Crystal Structures, Vibrational Spectra and Normal Coordinate Analysis of fac ‐(Et4N)[OsF3Cl3] and fac ‐(Et4N)[IrF3Cl3] By careful oxidation of the pure fluorochloroosmates(IV) or ‐iridates(IV) with BrF3 or KBrF4 in dichloromethane the mixed pentavalent complex anions fac‐[OsF3Cl3]– and fac‐[IrF3Cl3]– are formed. X‐ray structure determinations on single crystals have been performed of cis‐(Et4N)[OsF3Cl3] ( 1 ) (orthorhombic, space group Pbca, a = 11.225(5), b = 12.020(5), c = 21.873(5) Å, Z = 8) and fac‐(Et4N)[IrF3Cl3] ( 2 ) (orthorhombic, space group Pbca, a = 11.269(10) b = 12.049(1), c = 21.801(3) Å, Z = 8). Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra for the anion of 1 and 2 have been assigned by normal coordinate analysis. The Osmium compound exhibits slightly higher valence force constants as compared with the Iridium complex: fd(OsF) = 3.25, fd(IrF) = 3.25, fd(OsCl) = 2.35 and fd(IrCl) = 2.25 mdyn/Å. 相似文献
13.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of (Ph4P)2[OsN(N3)5] and 15N NMR Chemical Shifts of Nitridoosmates(VI, VIII) The treatment of (Ph4P)[OsNCl4] with NaN3 yields (Ph4P)2[OsN(N3)5], which crystal structure has been determined by single crystal X‐ray diffraction analysis (monoclinic, space group P 21/a, a = 20.484(6), b = 11.168(1), c = 20.666(4) Å, β = 97.35(3)°, Z = 4). The IR and Raman vibrations were assigned by a normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(Os≡N) = 8.52, fd(Os–Nα) = 1.99, fd(Nα–Nβ) = 12.42, fd(Nβ–Nγ) = 12.73 and for the azido ligand in trans‐position to the nitrido group fd(Os–Nα · ) = 1.84, fd(Nα · –Nβ · ) = 11.91, fd(Nβ · –Nγ · ) = 12.18 mdyn/Å. The 15N NMR spectra of various nitridoosmates reveal the chemical shifts δ(15N) for K[OsO315N] = 387.6, K2[Os15NCl5] = 446.7, (Ph4P)[Os15NCl4] = 352.9, [(n‐C6H13)4N]2[Os15N(N3)5] = 307.3 and for [(n‐Pr)4N]2[Os15N(15NCO)5] = 483,7 (Os≡N), –417,7 (OsNCOeq) und –392,8 ppm (OsNCOax). 相似文献
14.
Synthesis, Vibrational Spectra, and Crystal Structure of ( n ‐Bu4N)2[(W6Cl )F ] · 2 CH2Cl2 and 19F NMR Spectroscopic Evidence of the Mixed Cluster Anions [(W6Cl )F Cl ]2–, n = 1–6 The reaction of (n‐Bu4N)2[(W6Cl)Cl] with CF3COOH in dichloromethane gives intermediately a mixture of the cluster anions [(W6Cl)(CF3COO)Cl]2–, n = 1–6. By treatment with NH4F the outer sphere coordinated trifluoracetato ligands are easily substituted and the components of the series [(W6Cl)FCl], n = 1–6 are formed and characterized by their distinct 19F NMR chemical shifts. An X‐ray structure determination has been performed on a single crystal of (n‐Bu4N)2[(W6Cl)F] · 2 CH2Cl2 (orthorhombic, space group Pbca, a = 15.628(4), b = 17.656(3), c = 20.687(4) Å, Z = 4). The low temperatur IR (60 K) and Raman (20 K) spectra are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(WW) = 1.89, fd(WF) = 2.43 and fd(WCl) = 0.93 mdyn/Å. 相似文献
15.
Synthesis, Crystal Structures and Vibrational Spectra of Linkage Isomeric Pentabromorhodanoosmates(IV) By treatment of (n‐Bu4N)2[OsBr5I] with (SCN)2 in dichloromethane the linkage isomers (n‐Bu4N)2[OsBr5(NCS)] and (n‐Bu4N)2[OsBr5(SCN)] are formed which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. X‐ray structure determinations on single crystals of (n‐Bu4N)2[OsBr5(NCS)] (monoclinic, space group P21/n, a = 10.955(5), b = 11.649(5), c = 35.478(5) Å, β = 91.92(1)°, Z = 4) and (CH2Py2)[OsBr5(SCN)] (monoclinic, space group P21/n, a = 12.244(2), b = 10.134(3), c = 15.882(4) Å, β = 107.91(2)°, Z = 4) have been performed. The thiocyanate group is coordinated with the Os–N–C angle of 168° for N bonding and the Os–S–C angle of 110° for S bonding. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra of both linkage isomers are assigned by normal coordinate analysis. The valence force constants are fd(OsN) = 1,81 and fd(OsS) = 1,42 mdyn/Å. 相似文献
16.
Preparation, Crystal Structure, and Normal Coordinate Analysis of Linkage Isomeric Pentachloroiodoselenocyanatoosmates(IV). Crystal Structure of trans‐(PPh4)2[OsCl4I(NCSe)] By treatment of the solution of (n‐Bu4N)2[OsCl5I] in dichloromethane with suspended Pb(SeCN)2 the linkage isomers trans‐(n‐Bu4N)2[OsCl4I(NCSe)] ( 1 ) and trans‐(n‐Bu4N)2[OsCl4I(SeCN)] ( 2 ) are formed, which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. The X‐Ray structure determination on a single crystal of trans‐(PPh4)2[OsCl4I(NCSe)] (triclinic, space group P1¯, a = 10.8950(13), b = 11.076(2), c = 20.980(2)Å, α = 96.940(10), β = 98.747(9), γ = 104.419(11)°, Z = 2) reveals, that the nearly linear selenocyanate group in trans position to the iodine atom is coordinated with the Os‐N‐C angle of 171.1°. Based on the molecular parameters of the X‐ray determination ( 1 ) and estimated data ( 2 ) the IR and Raman spectra of both linkage isomers are assigned by normal coordinate analysis. The valence force constants are fd(OsN) = 1.70 und fd(OsSe) = 1.15 mdyn/Å. 相似文献
17.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of ( n ‐Bu4N)2[{Ru(NO)ClI2}2(μ‐I2)] · 2 I2 By treatment of (n‐Bu4N)2[Ru(NO)I5] with (n‐Bu4N)Cl in dichloromethane (n‐Bu4N)2[{Ru(NO)ClI2}2(μ‐I2)] is formed. The X‐Ray structure determination on a single crystal of (n‐Bu4N)2[{Ru(NO)ClI2}2(μ‐I2)] · 2 I2 (monoclinic, space group I 2/a, a = 20.446(6), b = 11.482(8), c = 27.225(3) Å, β = 107.51(4)°, Z = 4) reveals a dinuclear iodine bridged structure, in which the chlorine atoms are trans positioned to the nitrosyl groups. The low temperature IR and Raman spectra have been recorded of (n‐Bu4N)2[{Ru(NO)ClI2}2(μ‐I2)] · 2 I2 and are assigned by normal coordinate analysis. A good agreement between observed and calculated frequencies is achieved. The valence force constants are fd(NO) = 14.08, fd(RuN) = 5.58, fd(RuCl) = 1.52, fd(RuIt) = 0.90 and fd(RuIb) = 0.76 mdyn/Å. 相似文献
18.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of (CH2py2)[Ru(NO)FCl4] By treatment of [Ru(NO)Cl5]2– with a BrF3 saturated frigen solution in dichloromethane the complex [Ru(NO)FCl4]2– is formed, which can be separated from hydrolysis products by ion exchange chromatography on diethylaminoethyl cellulose. The X‐Ray structure determination on a single crystal of (CH2py2)[Ru(NO)FCl4] · 1/2 (CH3)2CO (triclinic, space group P1, a = 9.416(2), b = 14.919(6), c = 15.127(3) Å, α = 61.86(3), β = 80.31(2), γ = 72.49(3)°, Z = 4) reveals, that the fluorine atom is trans positioned to the nitrosyl group. The low temperature IR and Raman spectra have been recorded of (n‐Bu4N)2[Ru(NO)FCl4] and are assigned by normal coordinate analysis. A good agreement between observed and calculated frequencies is achieved. The valence force constants are fd(NO) = 13.92, fd(RuN) = 5.16, fd(RuF) = 3.19 and fd(RuCl) = 1.45 mdyn/Å. The 19F NMR spectra exhibits one singlet at –144.6 ppm. 相似文献
19.
Synthesis, Crystal Structure, and Vibrational Spectra of cis ‐(CH2Py2)[ReBr4Py2]2 · (CH3)2CO By reaction of (n‐Bu4N)2[ReBr6] with pyridine and (n‐Bu4N)BH4 in dichloromethane halogeno‐pyridine‐rhenium(III)complexes are formed and purified by chromatography. X‐ray structure determination on a single crystal has been performed of cis‐(CH2Py2)[ReBr4Py2]2 · (CH3)2CO (monoclinic, space group P21/c, a = 15.0690(9), b = 8.3337(8), c = 35.588(4) Å, β = 96.409(7), Z = 4). Based on the molecular parameters of the X‐ray structure determination and assuming C2 point symmetry for the anion cis‐[ReBr4Py2]– the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are in the Br–Re–Br axis fd(ReBr) = 1.49, in the asymmetrically coordinated N′–Re–Br · axes fd(ReBr · ) = 1.03 und fd(ReN′) = 2.52 mdyn/Å. 相似文献
20.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of Four Linkage Isomeric Tetrachlorodirhodanoosmates(IV) By treatment of cis- or trans-[OsCl4I2]2? with (SCN)2 in dichloromethane the linkage isomers cis-[OsCl4(NCS)2]2? ( 1 ), trans-[OsCl4(NCS)(SCN)]2? ( 2 ), cis-[OsCl4(NCS)(SCN)]2? ( 3 ) and trans-[OsCl4(SCN)2]2? ( 4 ) are formed which have been separated by ion exchange chromatography on diethylaminoethyl cellulose. The X-Ray structure determinations on single crystals of cis-(Ph4As)2[OsCl4(NCS)2] (triclinic, space group P1 , a = 10.019(5), b = 11.702(5), c = 21.922(5) Å, α = 83.602(5)°, β = 85.718(5)°, γ = 73.300(5)°, Z = 2), trans-(Ph4As)2[OsCl4 · (NCS)(SCN)] (monoclinic, space group P21/c, a = 18.025(5), b = 11.445(5), c = 23.437(5) Å, β = 94.208(5)°, Z = 4), cis-(Ph4As)2[OsCl4(NCS)(SCN)] (triclinic, space group P1 , a = 10.579(5), b = 11.682(5), c = 22.557(5) Å, α = 81.073(5)°, β = 85.807(5)°, γ = 87.677(5)°, Z = 2) and trans-(Ph4As)2 · [OsCl4(SCN)2] (triclinic, space group P1 , a = 10.615(5), b = 11.691(5), c = 11.907(5) Å, α = 111.314(5)°, β = 96.718(5)°, γ = 91.446(5)°, Z = 1) reveal the complete ordering of the complex anions. The via N or S coordinated thiocyanate groups are located nearly direct above one of the cis-positioned Cl ligands with Os? N? C angles of 171.2° and 174.3° ( 1 ), 162.3° ( 2 ), 172° ( 3 ) and Os? S? C angles of 108.3° ( 2 ), 105.7° ( 3 ) and 105.5° ( 4 ). Using the molecular parameters of the X-Ray determinations the low temperature (10 K) IR and Raman spectra of the (n-Bu4N) salts of all four linkage isomers are assigned by normal coordinate analyses based on a modified valence force field. The valence force constants are fd(OsN) = 1.59 ( 1 ), 1.67 ( 2 ), 1.60 ( 3 ) and fd(OsS) = 1.27 ( 2 ), 1.31 ( 3 ) and 1.32 mdyn Å?1 ( 4 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. 相似文献