首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 831 毫秒
1.
Understanding the behavior of polymeric materials, particularly their biodegradation, is fundamental for solving problems in the management of environmental residues. In this work, we used a monitoring system based on an aerobic biodegradation technique known as the Sturm test to investigate the biodegradation of poly-β-(hydroxybutyrate), poly-β-(hydroxybutyrate-co-β-valerate) and poly(ε-caprolactone), in compost derived from municipal solid waste. The thermal analysis of these polymers was done using differential scanning calorimeter. The melting temperature and crystallinity were also determined. The results showed that poly-β-(hydroxybutyrate) degraded faster than the other two polymers, probably because the chemical structure of this polymer made attack by microorganisms easier.  相似文献   

2.
Summary: Disposal of petroleum-derived polymers is a growing global environmental problem of alarming proportions, which has increased interest in the use and production of biodegradable materials. In addition to biodegradation, investment in research and development in the nanotechnology area is also significant. This study evaluated the effect of incorporation of an organophilic nanoclay ammonium-free salt (Novaclay™) on the mechanical properties and biodegradation of a biodegradable polyester (Ecoflex®), according to ASTM G 160. Ecoflex with and without incorporated Novaclay was characterized before and after biodegradation in organically enriched soil for up to 180 days, by visual analysis, optical microscopy, weight loss, differential scanning calorimetry, dynamic mechanical analysis, mechanical testing, and scanning electron microscopy. The pure Ecoflex and the Ecoflex/Novaclay nanocomposite were partially biodegraded by the method used, and showed changes in their morphological and mechanical properties.  相似文献   

3.
In the last decades, the solid-waste management related to the extensively growing production of plastic materials, in concert with their durability, have stimulated increasing interest in biodegradable polymers. At present, a variety of biodegradable polymers has already been introduced onto the market and can now be competitive with non biodegradable thermoplastics in different fields (packaging, biomedical, textile, etc.). However, a significant economical effort is still directed in tailoring structural properties in order to further broaden the range of applications without impairing biodegradation. Improving the performance of biodegradable materials requires a good characterization of both physico-chemical and mechanical parameters. Polymer analysis can involve many different features including detailed characterization of chemical structures and compositions as well as average molecular mass determination. It is of outstanding importance in troubleshooting of a polymer manufacturing process and for quality control, especially in biomedical applications. This review describes recent trends in the structural characterization of biodegradable materials by modern mass spectrometry (MS). It provides an overview of the analytical tools used to evaluate their degradation. Several successful applications of MALDI-TOF MS (matrix assisted laser desorption ionization time of flight) and ESI MS (electrospray mass spectrometry) for the determination of the structural architecture of biodegradable macromolecules, including their topology, composition, chemical structure of the end groups have been reported. However, MS methodologies have been recently applied to evaluate the biodegradation of polymeric materials. ESI MS represents the most useful technique for characterizing water-soluble polymers possessing different end group structures, with the advantage of being easily interfaced with solution-based separation techniques such as high-performance liquid chromatography (HPLC).  相似文献   

4.
Thermosetting materials have been widely used in a variety of applications but they generally display poor tractability after curing, which limits their use in applications where degradable or re-workable polymers are advantageous. Moreover, recyclability and biodegradability of thermosetting polymer also limit their use in applications where recycling and biodegradation are important. A variety of thermally degradable linkages within thermosetting materials have been studied both in academia and industry to develop re-workable adhesives. This review reports the recent development in thermosetting materials containing thermally breakable linkages that exhibit re-workability as well as potential for recyclability and biodegradability.  相似文献   

5.
Poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) were mixed at a ratio of 40:60, extruded to form granules and cast into film; then, the PLA, PBAT, and PBAT/PLA film samples were buried in real soil environments. The residual degraded samples were taken regularly from the soil and analyzed by SEM, DSC, TGA, IR spectroscopy and elemental analysis. The analyses showed that PBAT and PLA had different biodegradation mechanisms. Further, the melting temperature and the melting point change of the various components in the PBAT/PLA blend before and after the biodegradation essentially followed the process of the changes in the respective single polymers. After biodegradation, the carbon atom content in the molecular structure of the PBAT, PLA, and PBAT/PLA samples decreased, while the oxygen atom content increased, indicating that the samples indeed degraded. The biodegradation rates of PBAT and PLA in the PBAT/PLA blend were not the same as those for the single materials.  相似文献   

6.
Biodegradation of synthetic polymers is an important property that is used in many applications. Evaluation of the extent of biodegradation has used different methods in recent years. For each environmental compartment, different approaches have to be made in order to obtain valuable data on biodegradability.This review describes validated and accepted methods based on standardized biodegradation tests, analytical tests, enzymatic tests or tests of physical properties to evaluate the biodegradability of synthetic polymers for different types of environmental compartments (e.g., soil, compost or aqueous media).Part II of this review will subsequently report on the environmental biodegradation of different groups of synthetic polymers.  相似文献   

7.
A new concept based on hyphenation of biotests, for biological selection, and chemical analysis is introduced for water analysis. Biomolecular recognition components such as receptors, enzymes, and nucleic acids integrated in biological reaction chains are used for binding and selective enrichment of known and unknown biologically active substances in water samples; this is followed by identification and quantitation. The coupling of biomolecular recognition and binding to chemical analysis can be achieved either in discrete analytical steps, e.g. binding and elution of bioactive ligands from affinity columns followed by chemical analysis, or by methods capable of monitoring the binding of the ligand and simultaneous verification of its identity. This analytical strategy, denoted bioresponse-linked instrumental analysis (BLIA), enables detection of potential biological effects and identification of the analyte causing these effects. Several examples are presented.  相似文献   

8.
With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. Keeping in view the environmental pollution caused by the waste polystyrene and to make the waste polystyrene technologically important, we have modified/functionalized the polystyrene with natural polymers and hydrophilic monomer through graft copolymerization. The present paper discusses the optimum conditions for the synthesis of graft copolymers and characterization of these polymers with SEMs and FTIR and thereafter biodegradation studies of these polymers by soil burial method. The present paper also discusses the effect of crosslinker concentration on the swelling and metal ion sorption (As+5 uptake) through the functionalized polystyrene, with the intention to make use of these polymeric networks in water pollution alleviation technology. It has been observed that percent As5+ uptake decreases from 80% to 60% as the crosslinker concentration increases from 0.032 mM to 0.162 mM in the polymeric networks. It has also been observed from the degradation studies that the grafting of starch onto polystyrene has induced 37% degradation after 160 days soil burial treatment and no degradation has been observed in case of grafting of acrylic acid onto polystyrene.  相似文献   

9.
Grass lignocellulose   总被引:2,自引:0,他引:2  
Grass lignocelluloses are limited in bioconversion by aromatic constituents, which include both lignins and phenolic acids esters. Histochemistry, ultraviolet absorption microspectrophotometry, and response to microorganisms and specific enzymes have been used to determine the significance of aromatics toward recalcitrance. Coniferyl lignin appears to be the most effective limitation to biodegradation, existing in xylem cells of vascular tissues; cell walls with syringyl lignin, for example, leaf sclerenchyma, are less recalcitrant. Esterified phenolic acids, i.e., ferulic and p-coumaric acids, often constitute a major chemical limitation in nonlignified cell walls to biodegradation in grasses, especially warm-season species. Methods to improve biodegradation in grasses, especially warm-season species. Methods to improve biodegradability through modification of aromatics include: plant breeding, use of lignin-degrading white-rot fungi, and addition of esterases. Plant breeding for new cultivars has been especially effective for nutritionally improved forages, for example, bermudagrasses. In laboratory studies, selective white-rot fungi that lack cellulases delignified the lignocellulosic materials and improved fermentation of residual carbohydrates. Phenolic acid esterases released p-coumaric and ferulic acids for potential coproducts, improved the available sugars for fermentation, and improved biodegradation. The separation and removal of the aromatic components for coproducts, while enhancing the availability of sugars for bioconversion, could improve the economics of bioconversion.  相似文献   

10.
Coordination polymers and metal-organic frameworks are prime candidates for general chemical sensing, but the use of these porous materials as chiral probes is still an emerging field. In the last decade, they have found application in a range of chiral analysis methods, including liquid- and gas-phase chromatography, circular dichroism spectroscopy, fluorescence sensing, and NMR spectroscopy. In this minireview, we examine recent works on coordination polymers as chiral sensors and their enantioselective host-guest chemistry, while highlighting their potential for application in different settings.  相似文献   

11.
A series of epoxy resins has been formulated on the basis of obtaining low water sorption, low water vapor permeability, retention of electrical properties, and resistance to biodegradation by the body. These resins have been tested for these properties both by accelerated aging in 100°C water and in vivo studies.

A literature survey was conducted on the biodegradation of surgical plastics with the findings that nylon lost 80% of its tensile strength after 3 years implantation while Orlon and Dacron deteriorated considerably less in a 2-year period. Teflon, Mastic, and Mylar showed almost no loss in tensile strength after 17 to 22 months.

The epoxies tested on this program showed no loss in strength after 6 months in vivo.

It appears that materials whose chemical structure contain bonds similar to those found in the body (such as amide groups) are susceptible to biodegradation whereas those such as Teflon which contain only C-C bonds or C-F bonds are not.

Two general types of biodegradation can occur on polymers: Attack starting at the end of a polymer chain and proceeding along the chain to produce monomeric fragments (as in polypropylene), and attack at regular intervals along a polymer chain where susceptible cross-linking groups are present to produce macromolecular fragments.

It has been postulated that attack on polymers takes place in the amorphous areas (if they are present) to leave the more crystalline areas of the material intact. Thus, with implantation, these types of materials become brittle.

Histology on the developed epoxies indicated that epoxies containing nonreactive hydrophobic diluents showed a greater foreign body reaction than normal epoxies without such diluents.  相似文献   

12.
In recent years the littering of plastics and the problems related to their persistence in the environment have become a major focus in both research and the news. Biodegradable polymers like poly(lactic acid) are seen as a suitable alternative to commodity plastics. However, poly(lactic acid) is basically non‐degradable in seawater. Similarly, the degradation rate of other biodegradable polymers also crucially depends on the environments they end up in, such as soil or marine water, or when used in biomedical devices. In this Minireview, we show that biodegradation tests carried out in artificial environments lack transferability to real conditions and, therefore, highlight the necessity of environmentally authentic and relevant field‐testing conditions. In addition, we focus on ecotoxicological implications of biodegradable polymers. We also consider the social aspects and ask how biodegradable polymers influence consumer behavior and municipal waste management. Taken together, this study is intended as a contribution towards evaluating the potential of biodegradable polymers as alternative materials to commodity plastics.  相似文献   

13.
Hydroxylpropyl-β-cyclodextrins (HP-β-CDs), hydroxyalkyl derivatives of β-CD, used in a broad range of applications in food, pharmaceutical, agriculture and bioremediation of soil because of their specific chemical properties. The possibility of varying the biodegradation rate of HP-β-CDs by changing the DS and substitution pattern makes HP-β-CDs suitable for various applications. Therefore, their biodegradation fate has been of great concern. In this study, the biodegradation of various HP-β -CDs, which have different degrees and patterns of substitution in different soil ecosystems, was investigated. The degree and pattern of substitution of HP-β-CDs were determined by the reductive-cleavage method and methylation analysis. Two common soils and a contaminated soil were used in the biodegradation test. All CDs were found to be more or less biodegradable. Increasing the degree of substitution (DS) had negative effect on the biodegradation rate of HP-β-CDs. The substitution pattern affected the biodegradation, too. The biodegradation rates of CDs in the contaminated soil were higher than that obtained in the uncontaminated soils. The contamination removing ability of CDs was highly affected by their own biodegradation fate in soil.  相似文献   

14.
A straightforward experimental set-up derived from the Biometer Flask previously utilized for experiments of pesticides biodegradation, has been adopted for testing the ultimate biodegradability of natural, synthetic and semi-synthetic polymeric materials on solid substrates such as soil and mature compost. The use of these whole substrates as incubation media in respirometric experiments, may negatively affect the accuracy of the test due to the large amount of carbon dioxide developed from the blanks, especially in the presence of specimen degrading at low or moderate rates. In the present test procedure soil and compost samples are diluted with perlite, a naturally occurring inert aluminum silicate widely utilized in horticultural applications, in order to ensure optimal conditions for the microbial growth while reducing the carbon dioxide emissions from the blanks. The results so far reported clearly indicate that the adopted procedure is extremely valuable and versatile for the appreciation of even subtle differences in the biodegradation rate of different polymeric materials, as well as for long-term degradation experiments.  相似文献   

15.
The electrochemistry of conjugated organic polymers such as polyaniline, polythiophene, and polypyrrole has been reviewed. The physical chemistry and, especially, the electrochemistry of conducting polymers (CP) are largely determined by their electrosynthesis conditions. The effects of such factors as the dopant, solvent, and base electrolyte on the preparation and electrochemical n- and p-doping of CP have been considered. The outstanding features of the electrochemistry of CP have been delineated. The prospects for the use of CP as active cathode and anode materials in chemical cells have been discussed.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 30, No. 3, pp. 111–129, May–June, 1994.  相似文献   

16.
The purpose of the present work is the sol–gel synthesis, structure characterization and potential application of hybrid biomaterials based on silica precursor (MTES) and natural polymers such as gelatin or pectin. The structure formation in the biomaterials was investigated by XRD, FTIR, BET and AFM. The results showed that all studied hybrid biomaterials have an amorphous structure. The FT-IR spectra of the obtained materials with MTES showed chemical bonds at 2,975, 1,255, 880 and 690 cm−1 due to the presence of Si–O–R (CH3 and C2H5) and Si–C bonds. In the samples synthesized with TEOS the inorganic and organic components interact by hydrogen bonding, Van der Waals or electrostatic forces. Surface area of investigated samples decreases with increasing of the natural polymers content. The structure evolution was studied by AFM and roughness analysis. Depending on the chemical composition a different design and size of particles and their aggregates on the surface structure were established. The hybrid biomaterials were used for immobilization of bacterial cells and applied in the biodegradation of the toxic compound 4-chlorobutyronitrile, possible constituent of waste water effluents in a laboratory glass bioreactor. Optimization of the process at different temperatures was carried out.  相似文献   

17.
A significant increase in the production of plastic materials and the expansion of their areas of application contributed to the accumulation of a large amount of waste of polymeric materials. Most of the polymer composition is made up of plasticizers. Phthalate plasticizers have been recognized as potentially hazardous to humans and the environment due to the long period of their biodegradation and the formation of persistent toxic metabolites. It is known that the industrial plasticizer dioctyl adipate is characterized by reduced toxicity and a short biodegradation period. The paper describes the synthesis of a number of new asymmetric esters based on adipic acid and ethoxylated butanol by azeotropic esterification. The receipt of the products was confirmed by IR spectra. The physicochemical properties of the synthesized compounds were investigated. The glass transition temperatures of PVC composites plasticized with alkyl butoxyethyl adipates were determined using DSC analysis. The ecological safety of esters was assessed by the phytotesting method. Samples of adipates were tested for fungal resistance, and the process of their biodegradation in soil was also studied. It is shown that the synthesized esters have good plasticizing properties and are environmentally safe. When utilized under natural conditions, they can serve as a potential source of carbon for soil microorganisms and do not form stable toxic metabolites; therefore, they are not able to accumulate in nature; when the plasticizers under study are disposed of in the soil, toxic substances do not enter.  相似文献   

18.
共轭聚合物是由大量重复基元通过化学键连接的一维体系,具有独特的光、电、电化学等性质,已经引起学术界的广泛关注.由于共轭聚合物结构(链段、构象、聚集态)的复杂性,即使在非常精细的合成条件下,少量结构缺陷的形成也是难免的.共轭聚合物,特别在其固态状态下激发能量能够有效传递,使得少量缺陷的影响被放大,对其光电性质产生巨大影响.因此对共轭聚合物结构缺陷的研究,包括缺陷成因与控制、缺陷密度的分析、缺陷的分子结构与电子结构特征等,对于高品质材料的研发具有重要的意义.本文对国内外研究进展进行了比较详尽的介绍.  相似文献   

19.
In advance of a discussion on structural effects on biodegradation, aliphatic polyesters as biodegradable structural materials were classified into four types regarding chemical structure, that is poly(ω-hydroxy acid), poly(β-hydroxyalkanoate), poly(ω-hydroxyalkanoate) and poly(alkylene dicarboxylate), and reviewed on synthesis route, thermal and physical properties, and biodegradability. The biodegradation mechanism of these aliphatic polyesters were discussed on the major mode of hydrolysis reaction in regard whether it was enzyme-catalyzed or not, and the substrate specificities of enzymes, such as lipases or PHA depolymerases, were discussed on the hydrolysis of the aliphatic polyesters in respect of primary structure. Moreover, the biodegradation behaviors were exceedingly influenced by solid-state morphology in addition to primary structure. The rate of enzymatic degradation of polycaprolactone fibers drawn with various draw ratios was dependent on draw ratios, suggesting that crystallinity and orientation of them affected biodegradability by lipase. In the study of enzymatic degradation of films made from butylene succinate – ethylene succinate copolymer, the dependence of degradation rate on polymeric compositions was ascribed to the degree of crystallinity rather than the primary structure. These studies revealed that the degree of crystallinity was the major rate-determining factor of biodegradation of solid polymers. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Plasma polymerization is a well-established process for the deposition of thin polymeric films on various types of substrates. The potential of this technique for promoting changes of substrate’s wettability constitutes one of the most basic and often reported applications. However, as novel technological demands emerge, and with it the range of available characterizations, plasma polymers are having their niche of applications and properties expanded. The properties of these materials are commonly tailored through the variation of polymer chemistry, postfunctionalization, or other post-treatment processes. That chemical versatility allows the use of plasma polymers in adhesives, water treatment, biomedicine, and many other fields. The creation of nanostructures via lithography or during the deposition process itself constitutes other dynamic fields for new plasma polymer materials. In the current review, the design of materials through plasma polymerization is addressed with the direction given by our expertise in maleic anhydride plasma polymers (MAPP). A non-exhaustive number of applications of plasma polymers is provided to non-specialists as an overview of the materials coming out from the field of this chemical-vapor deposition process. A complete analysis of the literature on maleic anhydride plasma polymers is also performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号